Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hydrothermal leaching of rhyolite glass in the environment has implications for nuclear waste disposal

Abstract

Glass has been widely advocated as a suitable medium for the immobilization of high-level nuclear waste1–6. Methods of vitrification to borosilicate glass are advanced, with processes set up on a semi-industrial scale7–9, but an alternative strategy would be to incorporate waste into a high-silica glass10. It is generally proposed5,6 that vitrified radioactive waste be enclosed in metal canisters and stored underground. However, the presence of heated groundwater in rocks means that the canisters may corrode, allowing hot aqueous fluids to come into contact with the radioactive waste glass and leach out radioactive elements. Numerous laboratory tests have been performed for short periods and at relatively low temperatures to assess the leaching performances of different types of glass11–15, however, extrapolation to predict the long-term behaviour of glasses after burial is very uncertain. I report here a microprobe analysis technique which investigated hydrothermal leaching of rhyolite glass adjacent to a fluid conduit in the Tertiary hydrothermal system of the Isle of Skye, north-west Scotland. As the composition of rhyolite and proposed high-silica radioactive waste glasses are similar, this study may help to predict the long-term leaching behaviour of such glasses after underground burial.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. International Nuclear Information System (INIS) Atomindex Vol. 11, Part 5, 305 (Subject index of abstracts on vitrification) (1980).

  2. Symp. on Management of Radioactive Wastes from the Nuclear Fuel Cycle (IAEA and NEA (OECD), Vienna, 1976).

  3. Culler, F. Jr (ed.) Proc. Int. Symp. Management of Waste from the LWR Fuel Cycle (U.S. Energy Research and Development Administration, 1976).

  4. Johnson, K. D. B. & Marples, J. A. C. UKAEA, Harwell, AERE-R-9417 (HMSO, London, 1979).

    Google Scholar 

  5. Roberts, L. Atom 267, 8–20 (1979).

    CAS  Google Scholar 

  6. Feats, F. & Keen, N. New Scient. 77, 426–428 (1978).

    Google Scholar 

  7. Grover, J. R., Hardwick, W. H., Gayler, R. & Delve, M. H. The FINGAL Process (Conf-660208 (USAEC), Richland, 1966).

    Google Scholar 

  8. Daglish, J. Atom 269, 58–62 (1979); 290, 306–311 (1980).

    CAS  Google Scholar 

  9. Chotin, M. M., Bonniaud, R. A., Jouan, A. F. & Rabot, G. E. in Int. Symp. on Ceramics in Nuclear Waste Management, (eds Chikalla, T. D. & Mendel, J. E.) 73–81 (American Ceramic Society, Cincinnati, 1979).

    Google Scholar 

  10. Stone, J. A., Goforth, S. T. & Smith, P. K. A. Meet. Am. ceram. Soc. (Chicago, 1980).

  11. Morris, J. B. et al. Nature 273, 215–216 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Kärn-Bränsle-Säkerhet Report (AB Teleplan, SOLNA, Sweden 1978).

  13. Merritt, W. F. Proc. Symp. Management of Radioactive Wastes from Nuclear Fuel Cycle 2, 27–35 (IAEA, Vienna 1976).

    Google Scholar 

  14. Strathdee, G. G., McIntyre, N. S. & Taylor, P. Proc. int. Symp. Ceramics in Nuclear Waste Management (Cincinnati, CONF-790420 243–247, U.S. Department of Energy, Oak-ridge, 1979).

    Google Scholar 

  15. Karkhanis, S. N., Bancroft, G. M., Fyfe, W. S. & Brown, J. D. Nature 284, 435–437 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Gass, I. G. & Thorpe, R. S. ‘Igneous Case Study’ in Science: A Third Level Course. Earth Science Topics and Methods (ed. Aprahamian, F.) (Open University Press, 1976).

    Google Scholar 

  17. Bott, M. H. & Tuson, J. Nature 242, 114–116 (1973).

    Article  ADS  Google Scholar 

  18. Forester, R. W. & Taylor, H. P. Am. J. Sci. 277, 136–177 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Taylor, H. P. & Forester, R. W. J. Petrol. 20, 355–419 (1979).

    Article  ADS  CAS  Google Scholar 

  20. Norton, D. & Taylor, H. P. J. Petrol. 20, 421–486 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Exley, R. A. thesis, Univ. Oxford (1980).

  22. Brown, G. M. Min. Mag. 33, 533–562 (1963).

    ADS  CAS  Google Scholar 

  23. Le Maitre, R. W. J. Petrol. 17, 589–637 (1976).

    Article  ADS  CAS  Google Scholar 

  24. Puchelt, H. Handbook of Geochemistry (ed. Wedepohl, K. H.) 56D (Springer Berlin, 1978).

    Google Scholar 

  25. McCarthy, G. J. et al. Nature 273, 216–217 (1978).

    Article  ADS  CAS  Google Scholar 

  26. Jenks, G. H. in NWTS Conf. on Waste-Rock Interactions (U.S. Energy Research and Development Administration. Report Y/OW1/SUB-77/14268, 5016, 1977).

    Google Scholar 

  27. Mendel, J. E. Nucl. Technol. 32, 72–87 (1977).

    Article  CAS  Google Scholar 

  28. Dickin, A. P. & Exley, R. A. Contr. Miner. Petrol. 76, 98–108 (1981).

    Article  ADS  CAS  Google Scholar 

  29. Dickin, A. P., Exley, R. A. & Smith, B. M. Earth planet. Sci. Lett. 51, 58–70 (1980).

    Article  ADS  CAS  Google Scholar 

  30. Tómasson, J. & Kristmannsdóttir, H. Contr. Miner. Petrol. 36, 123–134 (1972).

    Article  ADS  Google Scholar 

  31. Exley, R. A. Earth planet. Sci. Lett. 48, 97–110 (1980).

    Article  ADS  CAS  Google Scholar 

  32. Schairer, J. F. J. Geol. 58, 512–517 (1950).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickin, A. Hydrothermal leaching of rhyolite glass in the environment has implications for nuclear waste disposal. Nature 294, 342–347 (1981). https://doi.org/10.1038/294342a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/294342a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing