Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dayside electron cyclotron harmonic emissions

Abstract

Observations of waves exhibiting an often complex frequency banding related to the electron gyrofrequency were first reported in 19701. Later observations2–5 showed that the spectral content of these electrostatic electron cyclotron harmonic waves is highly variable6,7, including single frequency emissions between the electron gyrofrequency Ωe and its first harmonic, multiple bands between consecutive harmonics of Ωe, and emissions in a single band far above the electron gyrofrequency8–10. These observations have led theorists to investigate both the linear instability which generates the waves11–15 and various wave–particle14,16 and wave–wave17–18 interactions in which they may be involved. The consensus seems to be that at least two plasma components with different temperatures are required to destablilize electron cyclotron harmonic waves. We adopt this view here and test our present knowledge of electron cyclotron harmonic instabilities against the observed reality. To do this we use simultaneous observations of wave spectra and electron distribution functions, available in the GEOS 1 data from 25 August 1977 (see ref. 15). From these we present the wave event and then use the measured particle fluxes to derive a model distribution function, providing the input to a computer program which solves the plasma dispersion relation. From the computed temporal growth rates and group velocities, the total amplification of waves which are unstable within a limited volume of space is estimated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kennel, C. F., Scarf, F. L., Fredricks, R. W., McGehee, J. G. & Coroniti, F. V. J. geophys. Res. 75, 6136 (1970).

    Article  ADS  Google Scholar 

  2. Fredricks, R. W. & Scarf, F. L. J. geophys. Res. 78, 310 (1973).

    Article  ADS  Google Scholar 

  3. Scarf, F. L., Fredricks, R. W., Kennel, C. F. & Coroniti, F. V. J. geophys. Res. 78, 3119 (1973).

    Article  ADS  Google Scholar 

  4. Shaw, R. R. & Gurnett, D. A. J. geophys. Res. 80, 4259 (1975).

    Article  ADS  Google Scholar 

  5. Anderson, R. R. & Maeda, K. J. geophys. Res. 82, 135 (1977).

    Article  ADS  Google Scholar 

  6. Hubbard, R. F., Birmingham, T. H. & Hones, E. W. J. geophys. Res. 84, 5828 (1979).

    Article  ADS  Google Scholar 

  7. Gough, M. P., Christiansen, P. J., Martelli, G. & Gershuny, E. J. Nature 279, 515 (1979).

    Article  ADS  Google Scholar 

  8. Kurth, W. S., Craven, J. D., Frank, L. A. & Gurnett, D. A. J. geophys. Res. 84, 4145 (1979).

    Article  ADS  Google Scholar 

  9. Christiansen, P. et al. Nature 272, 682 (1978).

    Article  ADS  Google Scholar 

  10. Christiansen, P. et al. Space Sci. Rev. 22, 383 (1978).

    Article  ADS  Google Scholar 

  11. Young, T. S. T., Callen, J. D. & McCune, J. E. J. geophys. Res. 78, 1082 (1973).

    Article  ADS  Google Scholar 

  12. Ashour-Abdalla, M. & Kennel, C. F. in Physics of the Hot Plasma in the Magnetosphere (eds Hultqvist, B. & Stenflo, L.) 201 (Plenum, New York, 1975).

    Book  Google Scholar 

  13. Karpman, V. I., Alekhin, Ju. K., Borisov, N. D. & Rajabova, N. A. Plasma Phys. 17, 937 (1975).

    Article  ADS  Google Scholar 

  14. Ashour-Abdalla, M. & Kennel, C. F. J. geophys. Res. 83, 1531 (1978).

    Article  ADS  Google Scholar 

  15. Rönnmark, K., Borg, H., Christiansen, P. J., Gough, M. P. & Jones, D. Space Sci. Rev. 22, 401 (1978).

    Article  ADS  Google Scholar 

  16. Lyons, R. L. J. geophys. Res. 79, 575 (1974).

    Article  ADS  Google Scholar 

  17. Rönnmark, K. Planet Space Sci. 25, 149 (1977).

    Article  ADS  Google Scholar 

  18. Melrose, D. B. Theoretical Physics Preprint (University of Sydney, 1980).

    Google Scholar 

  19. Jones, D. Space Sci. Rev. 22, 327 (1978).

    Article  ADS  Google Scholar 

  20. Home, R. B. et al. Nature 294, 338–340 (1981).

    Article  ADS  Google Scholar 

  21. Johnson, J. F. E., Sojka, J. J. & Wrenn, G. L. Space Sci. Rev. 22, 567 (1978).

    Article  ADS  Google Scholar 

  22. Borg, H. et al. Space Sci. Rev. 22, 511 (1978).

    Article  ADS  Google Scholar 

  23. Fried, B. D. & Conte, S. D. The Plasma Dispersion Function (Academic, New York, 1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rönnmark, K., Christiansen, P. Dayside electron cyclotron harmonic emissions. Nature 294, 335–338 (1981). https://doi.org/10.1038/294335a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/294335a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing