Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Size-dependent variation of nodal properties in myelinated nerve

Abstract

Although the physiological properties of myelinated nerve fibres, such as action potential duration, are known to vary with fibre size1,2, there has been little systematic examination of whether their biophysical properties show a similar variation (for example, in ionic conductance). Rather, differences have been identified between fibres on the basis of species3–6, or on whether the fibres are sensory or motor7,8. We report here the results of a comparison of amphibian (Rana pipiens) fibres of different sizes. Surprisingly, only the largest fibres (16–20 µm), usually selected for voltage-clamp study, had the large outward potassium currents described initially by Dodge and Franken-hauser9. Small fibres (9–11 µm) had little or no potassium conductance, and fibres of intermediate diameter had properties graded between these two extremes. This gradual loss of potassium conductance in fibres of decreasing size seemed to be due to the progressive electrical concealment of the potassium channels beneath the paranodal myelin. Thus brief treatment with the demyelinating agent lysophosphatidyl choline10,11 induced a large potassium conductance in the smaller fibres, but had little effect on the ionic currents of large fibres. We conclude that the biophysical properties of myelinated nerve fibres can vary with fibre size.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Paintal, A. S. J. Physiol., Lond. 184, 791–811 (1966).

    Article  CAS  Google Scholar 

  2. Jack, J. J. B. Br. J. Anaesth. 47, 173–182 (1975).

    Article  Google Scholar 

  3. Horakova, M., Nonner, W. & Stämpfli, R. Proc. int. Un. int. Physiol. Sci. 7, 198 (1968).

    Google Scholar 

  4. Brismar, T. Acta physiol. scand. 105, 384–386 (1979).

    Article  CAS  Google Scholar 

  5. Chiu, S. Y., Ritchie, J. M., Rogart, R. D. & Stagg, D. J. Physiol., Lond. 292, 149–166 (1979).

    Article  CAS  Google Scholar 

  6. Ilyin, V., Katina, I. E., Lonskii, A. V., Makovsky, V. S. & Polishchuk, E. V. J. Membrane Biol. 57, 179–193 (1980).

    Article  CAS  Google Scholar 

  7. Neumcke, B., Schwarz, W. & Stämpfli, R. Pflügers Arch. ges. Physiol. 387, 9–16 (1980).

    Article  CAS  Google Scholar 

  8. Palti, Y., Moran, N. & Stämpfli, R. Biophys. J. 32, 955–966 (1980).

    Article  CAS  Google Scholar 

  9. Dodge, F. A. & Frankenhauser, B. J. Physiol., Lond. 143, 76–90 (1958).

    Article  CAS  Google Scholar 

  10. Chiu, S. Y. & Ritchie, J. M. Nature 284, 170–171 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Smith, K. J. & Schauf, C. L. Science 212, 1170–1171 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Hille, B. J. gen. Physiol. 58, 599–619 (1971).

    Article  CAS  Google Scholar 

  13. Schmidt, H. & Stämpfli, R. Helv. physiol. pharmac. Acta 22, C143–C145 (1964).

    Google Scholar 

  14. Stämpfli, R. & Hille, B. Frog Neurobiology (eds Llinas, R. & Precht, W.) (Springer, Berlin, 1976).

    Google Scholar 

  15. Pencek, T. L., Schauf, C. L. & Davis, F. A. J. Pharmac. exp. Ther. 204, 400–405 (1978).

    CAS  Google Scholar 

  16. Smith, K. J. & Schauf, C. L. J. Pharmac. exp. Ther. 217, 719–726 (1981).

    CAS  Google Scholar 

  17. Hille, B. & Campbell, D. T. J. gen. Physiol. 67, 265–293 (1976).

    Article  CAS  Google Scholar 

  18. Hille, B. Biophysics and Physiology of Excitable Membranes (ed. Adelman, W. J.) 230–246 (Van Nostrand, New York, 1971).

    Google Scholar 

  19. Sigworth, F. J. thesis, Yale Univ. (1979).

  20. Bergman, C. Pflügers Arch. ges. Physiol. 317, 287–302 (1970).

    Article  CAS  Google Scholar 

  21. Sherratt, R. M., Bostock, H. & Sears, T. A. Nature 283, 570–572 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Brismar, T. J. Physiol., Lond. 298, 171–184 (1980).

    Article  CAS  Google Scholar 

  23. Smith, K. J. & Hall, S. M. J. neurol. Sci. 48, 201–219 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, K., Schauf, C. Size-dependent variation of nodal properties in myelinated nerve. Nature 293, 297–299 (1981). https://doi.org/10.1038/293297a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/293297a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing