Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Shallow water and hypersaline features from the Middle Proterozoic Mt Isa Sequence

Abstract

Fundamental differences of opinion exist about the depositional environment of sediments which host the Middle Proterozoic1 Mt Isa Cu and Pb–Zn deposits2,3 of northwestern Queensland, Australia. The copper host has been repeatedly interpreted as an algal reef2,4, and recently as a sabkha5, whilst models as diverse as saline lakes6 and deep oceanic basins3,7–9 have been proposed for the deposition of both the Cu and Pb—Zn ore-bodies. We now report the discovery of stromatolites, halite casts, large cross-bedded channel deposits, and flat-pebble conglomerates in sediments closely associated with the ore deposit. These sedimentary structures provide evidence of shallow-water deposition with intermittent hypersaline and emergent conditions during deposition of the Upper Mt Isa Group3,6 sequence. The assemblage of sedimentary structures strongly supports a shallow-marine or shallow-lacustrine depositional model. Either model is inconsistent with the previously postulated Red Sea-type submarine exhalative mineralization model3,7–9 for Mt Isa. Instead we argue that Mt Isa ore formation took place in a shallow-water system, possibly aided by the action of evaporite-derived brines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Glikson, A. Y., Derrick, G. M., Wilson, I. H. & Hill, R. M. J. Austr. Geol. Geophys. 1, 115–129 (1976).

    Google Scholar 

  2. Bennett, E. M. in AIME World Symp. Min. Metal. Lead Zinc 1, 137–170 (1970).

    Google Scholar 

  3. Mathias, B. V. & Clark, G. J. in Economic Geology of Australia and Papua New Guinea Vol 1, (ed. Knight, C. L.) 351–372 (Australasian Institute of Mining and Metallurgy Melbourne, (1975).

    Google Scholar 

  4. Stanton, R. L. Trans. Inst. Min. Metal. 72, 61–144 (1962).

    Google Scholar 

  5. McClay, K. R. & Carlile, D. G. Nature 274, 240–241 (1978).

    Article  ADS  CAS  Google Scholar 

  6. v. d. Heuvel, H. B. thesis Univ. Queensland (1969).

  7. Croxford, N. J. W. & Jephcott, S. Proc. Australas. Inst. Min. Metal. 243, 1–26 (1972).

    Google Scholar 

  8. Finlow-Bates, T. & Large, D. E. Geol. Jb. D30, 27–39 (1978).

    CAS  Google Scholar 

  9. Finlow-Bates, T. & Stumpfl, E. F. Ann. Soc. Belg. 102, 497–517 (1979).

    CAS  Google Scholar 

  10. Plumb, K. A., Derrick, G. M. & Wilson, I. H. in The geology and geophysics of Northeastern Australia (eds Henderson, R. A. & Stephenson, P. J.) (Geological Society of Australia Queensland Division, (1980).

    Google Scholar 

  11. v. d. Borch, C. C. & Lock, D. Sedimentology 26, 813–824 (1979).

    Article  ADS  Google Scholar 

  12. Logan, B. W., Hoffman, P. & Gebelein, C. D. in Evolution and Diagenesis of Quaternary Carbonate Sequences, Shark Bay, Western Australia, 190–194 (AAPG Mem. 22, (1974).

    Google Scholar 

  13. Kinsman, D. J. J. & Park, R. K. in Developments in Sedimentology Vol. 20 (ed. Walter, M. R.) 421–433 (Elsevier, Amsterdam, (1976).

    Google Scholar 

  14. Carozzi, A. V. J. Geol. 70, 246–252 (1962).

    Article  ADS  Google Scholar 

  15. v. d. Borch, C. C. in Developments in Sedimentology Vol. 20 (ed. Walter, M. R.) 413–420 (Elsevier, Amsterdam, (1976).

    Google Scholar 

  16. Shinn, E. A. Lloyd, R. H. & Ginsburg, R. N. J. Sed. Petrol. 39, 1202–1228 (1969).

    CAS  Google Scholar 

  17. Alien, G. R. L. Sedimentology 5, 83–88 (1965).

    Article  ADS  Google Scholar 

  18. Gebelein, C. D. J. Sed. Petrol. 39, 49–69 (1969).

    CAS  Google Scholar 

  19. Shearman, D. J. SEPM Short Course No. 4, Oklahoma City (1978).

  20. Picard, M. D. & Lee, R. H. Jr Geokongres 77: Geol. Soc. S. Afr. Spec. Publ. 6, 1–21 (1979).

    Google Scholar 

  21. Neev, D. & Emergy, K. O. The Dead Sea (Geological Survey Israel Jerusalem, (1967).

    Google Scholar 

  22. Amiel, A. J. & Friedman, G. M. Bull. Am. Ass. petrol. Geol. 55, 581–592 (1971).

    CAS  Google Scholar 

  23. Ridge, J. D. Miner. Depos. 8, 332–348 (1973).

    Article  ADS  CAS  Google Scholar 

  24. Carpenter, A. B., Trout, M. I. & Pickett, E. E. Econ. Geol. 69, 1191–1206 (1974).

    Article  CAS  Google Scholar 

  25. Davidson, C. F. Econ. Geol. 60, 942–953 (1965).

    Article  CAS  Google Scholar 

  26. Walker, R. N. Muir, M. D., Diver, W. L., Williams, N. & Wilkins, N. Nature 265, 526–529 (1977).

    Article  ADS  CAS  Google Scholar 

  27. Neudert, M. K. thesis ANU, ACT Australia (1981).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neudert, M., Russell, R. Shallow water and hypersaline features from the Middle Proterozoic Mt Isa Sequence. Nature 293, 284–286 (1981). https://doi.org/10.1038/293284a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/293284a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing