Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Changes of 2H and 18O enrichment of meteoric water and Pleistocene glaciation

Abstract

Recent theoretical modelling1 has suggested that the well documented δD–δ18O relationship for modern meteoric waters may have changed during the Pleistocene glacial periods in response to increased ocean surface air humidity. Here we present isotopic data on fluid inclusions and host speleothem which support this hypothesis. Depositional temperatures can be determined for speleothems formed in equilibrium conditions from the temperature dependence of the calcite–water 18O fractionation by isotopic analysis of both entrapped fluid inclusions and host calcite. Palaeotemperatures for five areas of east-central North America and Bermuda, calculated assuming the present δD–δ18O meteoric water relationship for fluid inclusion waters, are observe dto be too low during late Pleistocene glacial periods, in some instances falling below 0°C. By contrast, interglacial palaeotemperatures are largely equivalent to those in the areas at present. As speleothem deposition cannot occur at subzero temperatures, a possible solution to this dilemma is a shift in the intercept of the meteoric water relationship.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Merlivat, L. & Jouzel, J. J. geophys. Res. 84, 5029 (1979).

    Article  ADS  Google Scholar 

  2. Craig, H. Science 133, 1702 (1961).

    Article  ADS  CAS  Google Scholar 

  3. Dansgaard, W. Tellus 6, 436 (1964).

    ADS  Google Scholar 

  4. Friedman I., Redfield, A. C., Schoen, B. & Harris, J. Rev. Geophys. 2, 177 (1964).

    Article  ADS  CAS  Google Scholar 

  5. Shackleton, N. J. & Opdyke, N. D. Ouat. Res. 3, 39 (1973).

    CAS  Google Scholar 

  6. Hendy, C. L. Geochim. cosmochim. Acta 35, 801 (1971).

    Article  ADS  CAS  Google Scholar 

  7. Deuplessy, J. C., Labeyrie, J., Lalou, C. & Nguyen, H. Nature 226, 631 (1970).

    Article  ADS  Google Scholar 

  8. Harmon, R. S., Thompson, P., Schwarcz, H. & Ford, D. C. Quat. Res. 9, 54 (1978).

    Article  CAS  Google Scholar 

  9. Schwarcz, H. P., Harmon, R. S., Thompson, P. & Ford, D. C. Geochim. cosmochim. Acta 40, 657 (1976).

    Article  ADS  CAS  Google Scholar 

  10. O'Neil, J. R., Clayton, R. N. & Mayeda, T. K. J. chem. Phys. 30, 5547 (1969).

    Article  ADS  Google Scholar 

  11. O'Neil, J. R., Adami, L. H. & Epstein, S. J. Res. U.S. geol. Surv. 3, 623 (1975).

    CAS  Google Scholar 

  12. Harmon, R. S. Wat. Resour. Res. 15, 476 (1979).

    Article  ADS  Google Scholar 

  13. Duplessy, J. C., Labeyrie, J., Lalou, C. & Nguyen, H.V. Quat. Res. 1, 162 (1971).

    Article  CAS  Google Scholar 

  14. Harmon, R. S., Schwarcz, H. P. & O'Neil, J.R. Earth planet. Sci. Lett. 42, 254 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Gates, L. G. Science 191, 1138 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Harmon, R. S., Thompson, P., Schwarcz, H. P. & Ford, D. C. Nat. Speleol. Soc. Bull. 37, 21–33 (1975).

    CAS  Google Scholar 

  17. Allen, C. R., O'Brien, R. & Sheppard, S. M. F. Arctic Alpine Res. 8, 297 (1976).

    Article  CAS  Google Scholar 

  18. Ford, D. C., Harmon, R. S., Schwarcz, H. P., Wigley, T. M. L. & Thompson, P. Arctic Alpine Res. 16, 219 (1976).

    Google Scholar 

  19. Epstein, S., Sharp, R. P. & Gow, A. J. Science. 142, 1570 (1970).

    Article  ADS  Google Scholar 

  20. Epstein, S., Sharp, R. P. & Gow, A. J. J. geophys. Res. 70, 1809 (1965).

    Article  ADS  CAS  Google Scholar 

  21. Stewart, M. K. N. J. geol. Geophys. 18, 49 ( ).

  22. Schoell, M. & Faber E. Geol. Jb., D 17, 197 (1976).

    CAS  Google Scholar 

  23. Job, C., Moser, H., Rauert, W., Stichler, W. & Zolt, J. Naturmssenschaften 62, 136 (1976).

    Article  ADS  Google Scholar 

  24. Gonfiantini, R., Conrad, G., Fontes, J. Ch., Sauzay, G. & Payne, B. R. Isotope Techniques in Groundwater Hydrology Vol. 1, 227 (IAEA, Vienna 1974).

    Google Scholar 

  25. Epstein, S. & Mayeda, T. Geochim. cosmochim. Acta 4, 213 (1953).

    Article  ADS  CAS  Google Scholar 

  26. Friedman, I. Geochim. cosmochim. Acta 4, 89 (1953).

    Article  ADS  CAS  Google Scholar 

  27. Taylor, H. P. Econ. Geol. 69, 843 (1974).

    Article  CAS  Google Scholar 

  28. Thompson, P., Schwarcz, H. P. & Ford, D. C. Bull. geol. Soc. Am. 87, 1730 (1976).

    Article  CAS  Google Scholar 

  29. CLIMAP Project Members. Science 191, 1131 (1976).

    Article  ADS  Google Scholar 

  30. Peterson, G. M. et al. Quat. Res. 12, 47 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harmon, R., Schwarcz, H. Changes of 2H and 18O enrichment of meteoric water and Pleistocene glaciation. Nature 290, 125–128 (1981). https://doi.org/10.1038/290125a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/290125a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing