Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Excited ozone is a possible source of atmospheric N2O

Abstract

In the formation of ozone from O and O2 in the ground state, the products of the reaction may include electronically excited forms of ozone (O*3) which are spectroscopically recognizable in pulsed radiolysis and flash photolysis experiments1–4. Indeed, it has been suggested that in the three-body recombination reaction O+O2+M→O*3+M(1) there is a 62% chance that the ozone product will be in an excited form. Although the identity of these excited precursors of ozone is not known, excited 3B2, 3A2 and 1A2 states of bent ozone and the cyclic ozone have been suggested5–7, and the existence of electronically excited states of bent ozone below its dissociation limit has been corroborated by large-angle electron scattering experiments8. Thus, more than one form of internally excited ozone precursor may be involved. It has been estimated9 that ∑n(O*3) ≈ (100–1,000) · n (O1D) in the stratosphere. Consequently, even with moderate reactivity, O*3 may be chemically significant in the stratosphere. We now hypothesize that some of the internally excited ozone, probably that which is electronically excited, may be a potential source of N2O through the gas-phase reacton (2a), O*3 + N2→N2O + O2 (2a) →O3 + N2 (2b)

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Riley, J. F. & Cahill, R. W. J. chem. Phys. 52, 3297 (1970).

    Article  CAS  ADS  Google Scholar 

  2. Bevan, P. L. T. & Johnson, G. R. A. JCS Faraday Trans. I. 69, 216 (1973).

    Article  CAS  Google Scholar 

  3. von Rosenberg, C. W. & Trainer, D. W. J. chem. Phys. 63, 5348 (1980).

    Article  Google Scholar 

  4. Kleindienst, T., Locker, J. R. & Bair, E. J. J. Photochem. 12, 67 (1980).

    Article  CAS  Google Scholar 

  5. Wraight, P. C. Planet. Space Sci. 25, 1177 (1977).

    Article  CAS  ADS  Google Scholar 

  6. Hay, P. J., Dunning, T. H. & Goddard, W. A. III Chem. phys. Lett. 23, 457 (1973).

    Article  CAS  ADS  Google Scholar 

  7. Wright, J. S. Can. J. Chem. 51, 139 (1973).

    Article  CAS  Google Scholar 

  8. Swanson, N. & Cellota, R. J. Phys. Rev. Lett. 35, 783 (1975).

    Article  CAS  ADS  Google Scholar 

  9. Prasad, S. S. & Burton, P. G. Planet. Space Sci. 27, 411 (1979).

    Article  CAS  ADS  Google Scholar 

  10. Bates, D. R. & Witherspoon, A. E. Mon. Not. R. astr. Soc. 112, 101 (1952).

    Article  CAS  ADS  Google Scholar 

  11. Bates, D. R. & Hays, P. B. Planet. Space Sci. 15, 189 (1967).

    Article  CAS  ADS  Google Scholar 

  12. Sinel'nikova, G. Ye Atmos. Ocean Phys. 12, 106 (1976).

    CAS  Google Scholar 

  13. Goody, R. M. & Walshaw, C. D. Q. Jl R. met. Soc. 79, 496 (1953).

    Article  CAS  ADS  Google Scholar 

  14. DeMore, W. B. & Raper, O. F. J. chem. Phys. 37, 2048 (1962).

    Article  CAS  ADS  Google Scholar 

  15. Lin, C. L. & DeMore, W. B. J Photochem. 2, 161 (1973/1974).

    Article  CAS  Google Scholar 

  16. Jones, I. T. N. & Wayne, R. P. Proc. R. Soc. A319, 273 (1970).

    Article  CAS  ADS  Google Scholar 

  17. Kuis, S., Simonaitis, R. & Heicklen, J. J. geophys. Res. 80, 1328 (1975).

    Article  CAS  ADS  Google Scholar 

  18. Simonaitis, R., Braslavisky, S., Heicklen, J. & Nicolet, M. Chem. phys. Lett. 19, 601 (1973).

    Article  CAS  ADS  Google Scholar 

  19. DeMore, W. B. & Raper, O. F. J. chem. Phys. 44, 1780 (1966).

    Article  ADS  Google Scholar 

  20. Simonaitis, R., Lissi, E. & Heicklen, J. J. geophys. Res. 77, 4248 (1972).

    Article  CAS  ADS  Google Scholar 

  21. Shimazaki, T., Ogawa, T. & Farrell, B. C. NASA Tech. Note TN D-8399 (NASA, Washington DC 1977).

  22. Stratospheric Ozone Depletion by Halocarbons: Chemistry and Transport (US National Academy of Sciences, Washington DC 1979).

  23. Farmer, C. B., Raper, O. F., Robbins, B. D., Toth, R. A. & Muller, C. J. geophys. Res. 85, 1621 (1980).

    Article  CAS  ADS  Google Scholar 

  24. Levy, H. II, Mahlman, J. D. & Moxim, W. J. Geophys. Res. Lett. 6, 155 (1979).

    Article  CAS  ADS  Google Scholar 

  25. Weiss, R. F. & Craig, H. Geophys. Res. Lett. 3, 751 (1976).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, S. Excited ozone is a possible source of atmospheric N2O. Nature 289, 386–388 (1981). https://doi.org/10.1038/289386a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/289386a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing