Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Conservation and rearrangement of mitochondrial structural gene sequences

Abstract

Mitochondria contain the simplest DNA molecules that are present in eukaryotes. Mitochondrial DNA (mtDNA) is easily purified, and is an important model system for studying eukaryote gene structure and basic molecular processes. The protein sequences of mitochondrial gene products have been shown to be conserved from yeast1–3 to man4, and there are definite similarities at the DNA sequence level. In contrast, the overall organization of the mitochondrial genome is drastically different in these organisms. To understand this, we need to extend work on mtDNA to a wider range of species. We have chosen to study the mtDNA of Aspergillus nidulans because a particularly comprehensive analysis of this system can be achieved using genetics as well as biochemistry, and like most eukaryotes it is an obligate aerobe, whereas Saccharomyces cerevisiae is not. We have investigated whether defined pieces of particular yeast mitochondrial genes show enough homology to Aspergillus mtDNA fragments to enable the corresponding Aspergillus genes to be located on the physical map. The results reported here show that this is the case for all five genes tested, and present the first data on the physical organization of the structural genes in the mitochondrial genome of A. nidulans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Borst, P. & Grivell, L. A. Cell 15, 705–723 (1978).

    Article  CAS  Google Scholar 

  2. Coruzzi, G. & Tzagoloff, A. J. biol. Chem. 254, 9324–9330 (1979).

    CAS  PubMed  Google Scholar 

  3. Macino, G. & Tzagoloff, A. Cell (in the press).

  4. Barrell, B. G. et al. Proc. natn. Acad. Sci. U.S.A. 77, 3164–3166 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Southern, E. M. J. molec. Biol. 98, 503 (1975).

    Article  CAS  Google Scholar 

  6. Wahl, G. M., Stern, M. & Stack, G. R. Proc. natn. Acad. Sci. U.S.A. 76, 3683–3687 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Lazarus, C. M. & Turner, G. Molec. gen. Genet. 156, 303–311 (1977).

    Article  CAS  Google Scholar 

  8. Küntzel, H. in Organisation and Expression of the Mitochondrial Genome (eds Kroon, A. M. & Saccone, C.) (Elsevier, Amsterdam, in the press).

  9. Wachter, E. & Sebald, W. in Mitochondria 1977, Genetics and Biogenesis of Mitochondria (eds Bandlow, W., Schweyen, R. J. Wolf, K. & Kaudewitz, F.) 441–449 (de Gruyter, Berlin, 1977).

    Google Scholar 

  10. Rowlands, R. T. & Turner, G. Molec. gen. Genet. 126, 201–216 (1973).

    Article  CAS  Google Scholar 

  11. Waring, R. B. & Scazzocchio, C. Genetics (submitted).

  12. Rowlands, R. T. & Turner, G. Molec. gen. Genet. 141, 69–79 (1975).

    Article  CAS  Google Scholar 

  13. Waring, R. B. & Scazzocchio, C. J. gen. Microbiol. 119, 297–311 (1980).

    CAS  PubMed  Google Scholar 

  14. Gunatilleke, I. A. U. N., Scazzocchio, C. & Arst, H. N. Jr Molec. gen. Genet. 137, 269–276 (1975).

    Article  CAS  Google Scholar 

  15. Waldron, C. & Roberts, C. F. J. gen. Microbiol. 78, 379–381 (1973).

    Article  CAS  Google Scholar 

  16. Butow, R. A., Vincent, R. D., Strausberg, R. L., Zanders, E. & Perlman, P. S. in Mitochondria 1977, Genetics and Biogenesis of Mitochondria (eds Bandlow, W., Schweyen, R. J., Wolf, K. & Kaudewitz, F.) 317–335 (de Gruyter, Berlin, 1977).

    Google Scholar 

  17. Lazarus, C. M., Lünsdorf, H., Hahn, U., Stepien, P. P. & Küntzel, H. Molec. gen. Genet. 177, 389–397 (1980).

    Article  CAS  Google Scholar 

  18. Turner, G., Imam, G. & Küntzel, H. Eur. J. Biochem. 97, 565–571 (1979).

    Article  CAS  Google Scholar 

  19. Cummings, D. J., Belcour, L. & Grandchamp, C. Molec. gen. Genet. 171, 229–238 (1979).

    Article  CAS  Google Scholar 

  20. Peacock, A. D. & Dingman, C. W. Biochemistry 7, 668–674 (1968).

    Article  CAS  Google Scholar 

  21. Faye, G., Kujawa, C. & Fukuhara, H. J. molec. Biol. 88, 185–203 (1974).

    Article  CAS  Google Scholar 

  22. Sanders, J. P. M., Borst, P. & Weigers, P. J. Molec. gen. Genet. 143, 53–64 (1975).

    Article  CAS  Google Scholar 

  23. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  24. Thelenfeld, B. E. & Tzagoloff, A. J. biol. Chem. (in the press).

  25. Nobrega, F. & Tzagoloff, A. J. biol. Chem. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macino, G., Scazzocchio, C., Waring, R. et al. Conservation and rearrangement of mitochondrial structural gene sequences. Nature 288, 404–406 (1980). https://doi.org/10.1038/288404a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/288404a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing