Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The relationship between coding sequences and function in haemoglobin

Abstract

Gilbert has suggested that the presence of intervening sequences in DNA, called introns, can speed evolution by allowing novel proteins to be constructed from the pieces of existing ones1. This hypothesis further suggests that the coding sequences, called exons, correspond to functional parts of the protein. The most striking example so far is the case of the immunoglobulin γ heavy chain, where the four polypeptide sequences corresponding to the four coding sequences form structurally and functionally distinct parts of the molecule1,2. The relation between the three coding sequences of the β globin gene and structure or function is not as obvious, but the central coding sequence does code for the part of the globin chain which forms the haem crevice3,4. To further test the idea that coding sequences correspond to functional units of proteins we consider the relationship between the coding sequences of α and β globin genes and the corresponding parts of the complete, tetrameric haemoglobin molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gilbert, W. Nature 271, 501 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Sakano, H. et al. Nature 277, 627 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Blake, C. C. F. Nature 277, 598 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Gilbert, W. in Eukaryotic Gene Regulation, ICN-UCLA Symposium on Molecular and Cellular Biology Vol. 14 (eds Axel, R., Maniatis, T. & Fox, C. F.) 1–10 (Academic, New York, 1979).

    Google Scholar 

  5. Monod, J., Wyman, J. & Changeux, J. P. J. molec. Biol. 12, 88 (1965).

    Article  CAS  Google Scholar 

  6. Perutz, M. F. Nature 228, 726 (1970).

    Article  ADS  CAS  Google Scholar 

  7. Shulman, R. G., Hopfield, J. J. & Ogawa, S. Q. Rev. Biophys. 8, 325 (1975).

    Article  CAS  Google Scholar 

  8. Szabo, A. & Karplus, M. J. molec. Biol. 72, 163 (1972).

    Article  CAS  Google Scholar 

  9. Edelstein, S. J. A. Rev. Biochem. 44, 209 (1976).

    Article  Google Scholar 

  10. Perutz, M. F. A. Rev. Biochem. 48, 327 (1979).

    Article  CAS  Google Scholar 

  11. Baldwin, J. & Chothia, C. J. molec. Biol. 129, 175 (1979).

    Article  CAS  Google Scholar 

  12. Perutz, M. F. & Lehmann, H. Nature 219, 902 (1968).

    Article  ADS  CAS  Google Scholar 

  13. Greer, J. Cold Spring Harb. Symp. quant. Biol. 36, 315 (1971).

    Article  CAS  Google Scholar 

  14. Fermi, G. J. molec. Biol. 97, 237 (1975).

    Article  CAS  Google Scholar 

  15. Goodman, M., Moore, G. W. & Matsuda, G. Nature 253, 603 (1975).

    Article  ADS  CAS  Google Scholar 

  16. Arnone, A. Nature 237, 146 (1972).

    Article  ADS  CAS  Google Scholar 

  17. Matthew, J. B., Hanania, G. I. H. & Gurd, F. R. N. Biochemistry 18, 1928 (1979).

    Article  CAS  Google Scholar 

  18. List of haemoglobin variants Hemoglobin 1, 601 (1977).

  19. List of haemoglobin variants Hemoglobin 1, 707 (1977).

  20. Gelin, B. & Karplus, M. Proc. natn. Acad. Sci. U.S.A. 74, 801 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Riggs, A. Fedn Proc. 35, 2115 (1976).

    CAS  Google Scholar 

  22. Leder, A. et al. Proc. natn. Acad. Sci. U.S.A. 75, 6187 (1978).

    Article  ADS  CAS  Google Scholar 

  23. Nishioka, Y. & Leder, P. Cell 18, 875 (1979).

    Article  CAS  Google Scholar 

  24. Van den Berg, J. et al. Nature 276, 37 (1978).

    Article  ADS  CAS  Google Scholar 

  25. Konkel, D. A., Tilghmann, S. M. & Leder, P. Cell 15, 1125 (1978).

    Article  CAS  Google Scholar 

  26. Li, S. L. & Riggs, A. J. biol Chem. 245, 6149 (1970).

    CAS  PubMed  Google Scholar 

  27. Love, W. E. et al. Cold Spring Harb. Symp. quant. Biol. 36, 349 (1971).

    Article  CAS  Google Scholar 

  28. Bucci, C. F. & Bucci, E. Biochemistry 14, 4451 (1975).

    Article  CAS  Google Scholar 

  29. Winslow, R. M. & Anderson, W. F. The Metabolic Basis of Inherited Disease (eds Stanbury, J. B., Wyngaarden, J. B. & Frederickson, D. S.) 1465–1507 (McGraw-Hill, New York, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eaton, W. The relationship between coding sequences and function in haemoglobin. Nature 284, 183–185 (1980). https://doi.org/10.1038/284183a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/284183a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing