Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Different components of black widow spider venom mediate transmitter release at vertebrate and lobster neuromuscular junctions

Abstract

Crude black widow spider venom (BWSV) has profound physiological effects on several neuromuscular preparations, both vertebrate and invertebrate1. At frog and mouse neuromuscular junctions (NMJs), BWSV causes a massive increase in the frequency of miniature endplate potentials (m.e.p.ps)2,3 followed by a reduction in m.e.p.p. frequency and depletion of synaptic vesicles3–5. Qualitatively similar physiological and morphological effects are also observed at lobster6–8 and insect9,10 NMJs after treatment with BWSV. Apparently, therefore, this venom can cause the release of several transmitters—acetylcholine at vertebrate NMJs and γ-aminobutyric acid (GABA) and glutamate at invertebrate NMJs11. BWSV has also been shown to cause the release of acetylcholine, noradrenaline and GABA from slices of mouse cerebral cortex12,13. α-Latrotoxin, a protein of molecular weight (MW) 130,000, had previously been shown to be responsible for the venom effects at vertebrate NMJs and in mouse brain slices12–14. That finding prompted the question of whether α-latrotoxin was also responsible for transmitter release in the lobster preparation. The present report demonstrates that although the electrophysicological effects of BWSV on lobster and frog NMJs are similar, they are caused by different components of the venom. The effects on the lobster are attributable to fraction E, which contains a major 65,000-MW protein and several lower molecular weight species. It has previously been shown that fraction E causes firing of the crayfish stretch receptor14. Some of these results have been published elsewhere15.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hurlbut, W. P. & Ceccarelli, B. in Advances in Cytopharmacology Vol. 3 (eds Ceccarelli, B. & Clementi, F.) 87–115 (Raven, New York, 1979).

    Google Scholar 

  2. Longenecker, H. E. Jr, Hurlbut, W. P., Mauro, A. & Clark, A. W. Nature 225, 701–703 (1970).

    Article  ADS  Google Scholar 

  3. Gorio, A., Hurlbut, W. P. & Ceccarelli, B. J. Cell Biol. 78, 716–733 (1978).

    Article  CAS  Google Scholar 

  4. Clark, A. W., Mauro, A., Longenecker, H. E. Jr & Hurlbut, W. P. Nature 225, 703–704 (1970).

    Article  ADS  CAS  Google Scholar 

  5. Clark, A. W., Hurlbut, W. P. & Mauro, A. J. Cell Biol. 52, 1–14 (1972).

    Article  CAS  Google Scholar 

  6. Kawai, N., Mauro, A. & Grundfest, H. J. gen. Physiol. 60, 650–664 (1972).

    Article  CAS  Google Scholar 

  7. Holtzman, E. et al. J. Histochem. Cytochem. 21, 349–385 (1973).

    Article  CAS  Google Scholar 

  8. Fritz, L. C., Atwood, H. L. & Jahromi, S. S. Abstr. Soc. Neurosci. 5, 480 (1979).

    Google Scholar 

  9. Cull-Candy, S. G., Neal, H. & Usherwood, P. N. R. Nature 241, 353–354 (1973).

    Article  ADS  CAS  Google Scholar 

  10. Ornberg, R. L., Smyth, T. & Benton, A. W. Toxicon 14, 329–333 (1976).

    Article  CAS  Google Scholar 

  11. Gerschenfeld, H. M. Physiol. Rev. 53, 1–119 (1973).

    Article  CAS  Google Scholar 

  12. Tzeng, M.-C. & Siekevitz, P. Brain Res. 139, 190–196 (1978).

    Article  CAS  Google Scholar 

  13. Tzeng, M.-C., Cohen, R. S. & Siekevitz, P. Proc. natn. Acad. Sci. U.S.A. 75, 4016–4020 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Frontali, N. et al. J. Cell Biol. 68, 462–479 (1976).

    Article  CAS  Google Scholar 

  15. Fritz, L. C., Tzeng, M.-C. & Mauro, A. Abstr. Soc. Neurosci. 4, 369 (1978).

    Google Scholar 

  16. Fritz, L. C., Wang, C. C. & Gorio, A. Proc. natn. Acad. Sci. U.S.A. 76, 2062–2066 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Hurlbut, W. P., Longenecker, H. E. Jr & Mauro, A. J. Physiol. Lond. 219, 17–38 (1971).

    Article  CAS  Google Scholar 

  18. Tzeng, M.-C. & Siekevitz, P. J. Neurochem. 33, 263–274 (1979).

    Article  CAS  Google Scholar 

  19. Rubin, L. L. thesis, Rockefeller Univ. (1976).

  20. Finkelstein, A., Rubin, L. L. & Tzeng, M.-C. Science 193, 1009–1011 (1976).

    Article  ADS  CAS  Google Scholar 

  21. Misler, S. & Hurlbut, W. P. Proc. natn. Acad. Sci. U.S.A. 76, 991–995 (1979).

    Article  ADS  CAS  Google Scholar 

  22. Van der Kloot, W. & Kita, H. J. comp. Physiol. 91, 111–125 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritz, L., Tzeng, MC. & Mauro, A. Different components of black widow spider venom mediate transmitter release at vertebrate and lobster neuromuscular junctions. Nature 283, 486–487 (1980). https://doi.org/10.1038/283486a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/283486a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing