Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inefficient lactate dehydrogenases of deep-sea fishes

Abstract

The respiratory rates of deep-sea animals are extremely low. Deep-sea fishes may consume oxygen at rates only 5–10% those characteristic of shallow-water species1–4. These low metabolic rates are probably an adaptation to the presumed scarcity of food in deeper water4. The biochemical basis of this metabolic adaptation is a low level of enzyme activity in the skeletal muscle (but not the heart or brain), mainly because of the low enzyme concentrations in that tissue5. We report here, however, that a second source of reduced enzyme activity contributes to the low metabolic rate. For muscle-type (M4) lactate dehydrogenases (LDH, EC 1.1.1.27, NAD+ :lactate oxidoreductase), the enzymes of deep-sea fishes have significantly higher activation free energy (ΔG*) and enthalpy (ΔH*) characteristics than the homologous enzymes of cold-adapted, shallow-water fishes. Because of these higher energy barriers to catalysis, pyruvate is reduced to lactate at approximately 60% of the rate observed with LDHs of shallow-water fishes. Thus, in terms of rate of function per enzyme molecule, deep-sea fishes would be at a disadvantage in shallow waters because of their relatively poor capacity for muscle glycolysis. Such enzymatic factors may help determine the upper distributions of deep-sea species, much as the relatively large pressure insensltivities of LDHs of these deep-sea fishes6,7 may enable them to tolerate high and variable pressures. We suggest that the low catalytic efficiencies of high-pressure-adapted LDHs are concomitant with their low sensitivities to pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smith, K. L. Nature 274, 362–364 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Smith, K. L. & Hessler, R. R. Science 184, 72–73 (1974).

    Article  ADS  Google Scholar 

  3. Torres, J. J., Belman, B. W. & Childress, J. J. Deep Sea Res. 26 A, 185–197 (1978).

    Article  ADS  Google Scholar 

  4. Somero, G. N., Siebenaller, J. F. & Hochachka, P. W. in The Sea Vol. 8 (ed. Rowe, G. T.) (Wiley-Interscience, New York, in the press).

  5. Childress, J. J. & Somero, G. N. Mar. Biol. 52, 273–283 (1979).

    Article  CAS  Google Scholar 

  6. Siebenaller, J. F. & Somero, G. N. Science 201, 255–257 (1978).

    Article  ADS  CAS  Google Scholar 

  7. Siebenaller, J. F. & Somero, G. N. J. comp. Physiol. 129, 295–300 (1978).

    Article  Google Scholar 

  8. Somero, G. N. A. Rev. Ecol. Syst. 9, 1–29 (1978).

    Article  CAS  Google Scholar 

  9. Low, P. S., Bada, J. L. & Somero, G. N. Proc. natn. Acad. Sci. U.S.A. 72, 3305–3309 (1973).

    Article  ADS  Google Scholar 

  10. Borgmann, U., Laidler, K. J. & Moon, T. W. Can. J. Biochem. 53, 1196–1206 (1975).

    Article  CAS  Google Scholar 

  11. Borgmann, U. & Moon, T. W., Can, J., 53, 998–1004 (1975).

  12. Johnston, I. A. & Walesby, N. J. J. comp. Physiol. 119, 195–206 (1977).

    Article  CAS  Google Scholar 

  13. Pickard, G. L. Descriptive Physical Oceanography (Pergamon, Oxford, 1963).

    Google Scholar 

  14. Moser, H. G. U.S. Natn. mar. Fish. Ser. fish. Bull. 72, 865–884 (1974).

    Google Scholar 

  15. Baldwin, J., Storey, K. B. & Hochachka, P. W. Comp. Biochem. Physiol. 52 B, 19–23 (1975).

    Article  CAS  Google Scholar 

  16. Childress, J. J. & Nygaard, M. H. Deep Sea Res. 20, 1093–1109 (1973).

    CAS  Google Scholar 

  17. Blaxter, J. H. S., Wardle, C. S. & Roberts, B. L. J. mar. biol. Ass. U.K. 51, 991–1006 (1971).

    Article  Google Scholar 

  18. Yancey, P. H. & Somero, G. N. J. comp. Physiol. 125, 129–134 (1978).

    Article  CAS  Google Scholar 

  19. Wilkinson, G. N. Biochem. J. 80, 324–332 (1961).

    Article  CAS  Google Scholar 

  20. Lumry, R. & Rajender, S. Biopolymers 9, 1125–1127 (1970).

    Article  CAS  Google Scholar 

  21. Sienbenaller, J. F. in Marine Organisms: Genetics, Ecology and Evolution (eds Battaglia, B. & Beardmore, J. A.) 95–122 (Plenum, New York, 1978).

    Google Scholar 

  22. Sedmark, J. J. & Grossberg, S. E. Analyt. Biochem. 79, 544–552 (1977).

    Article  Google Scholar 

  23. Yancey, P. H. & Somero, G. N. J. comp. Physiol. 125, 135–141 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somero, G., Siebenaller, J. Inefficient lactate dehydrogenases of deep-sea fishes. Nature 282, 100–102 (1979). https://doi.org/10.1038/282100a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/282100a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing