Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Action of a nematode-trapping fungus shows lectin-mediated host–microorganism interaction

Abstract

Many nematode-trapping fungi capture nematodes using an adhesive present on specific capture organs (for review see ref. 1). Until recently, the mechanism of adhesion was completely unknown. In the case of Arthrobotrys oligospora, one of the most common nematophagous fungi, nematodes are trapped in three-dimensional structures of the adhesive network type (Fig. 1a). When a suspension of nematodes is added to an agar culture of the fungus, nematodes are immediately captured and firmly held by the traps. The nematode cuticle is lysed at the point of contact and penetrated by a hypha within one hour2. An increased secretion by the fungus of a mucilaginous substance in the presence of prey has been shown by scanning and transmission electron microscopy2,3. Our hypothesis is that the firmness of attachment to the traps despite the struggle of the nematode is due to a series of events, beginning with an interaction between complementary molecular configurations on the nematode and fungal surfaces. We show evidence here for the presence of a lectin on the traps of A. oligospora which binds to a carbohydrate on the nematode surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barron, G. L. The Nematode-Destroying Fungi, 21–46 (Canadian Biological Publications Ltd., Guelph, Ontario, Canada, 1977).

    Google Scholar 

  2. Nordbring-Hertz, B. & Stålhammer-Carlemalm, M. Can. J. Bot. 56(10), 1297–1307 (1978).

    Article  Google Scholar 

  3. Nordbring-Hertz, B. Physiologia Pl. 26, 279–284 (1972).

    Article  Google Scholar 

  4. Rosen, S. D., Kafka, J. A., Simpson, D. L. & Barondes, S. H. Proc. natn. Acad. Sci. U.S.A. 70(9), 2554–2557, (1973).

    Article  ADS  CAS  Google Scholar 

  5. Rosen, S. D., Simpson, D. L., Rose, J. E. & Barondes, S. H. Nature 252, 149–151 (1974).

    Article  Google Scholar 

  6. Frazier, W. A., Rosen, S. D., Reitherman, R. W. & Barondes, S. H. J. biol. Chem. 250(19), 7714–7721 (1975).

    CAS  PubMed  Google Scholar 

  7. Lockhart, C. M., Rowell, P. & Stewart, W. D. P. FEMS microbiol. Lett. 3, 127–130 (1978).

    Article  CAS  Google Scholar 

  8. Dazzo, F. B. & Hubbel, D. H. Appl. Microbiol. 30(6), 1017–1033 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wolpert, J.S. & Albersheim, P. Biochem. biophys. Res. Commun. 70(3), 729–737 (1976).

    Article  CAS  PubMed  Google Scholar 

  10. Dazzo, F. B. & Brill, W. J. Appl. environment. Microbiol. 33(1), 132–136 (1977).

    CAS  Google Scholar 

  11. Bhuvaneswari, T. V., Pueppke, S. G. & Bauer, W. D. Pl. Physiol. 60, 486–491 (1977).

    Article  CAS  Google Scholar 

  12. Nordbring-Hertz, B. Trans. Br. mycol. Soc. 68, 53–57 (1977).

    Article  Google Scholar 

  13. Goldstein, I. J. & Hayes, C. E. Adv. Carbohyd. Chem. Biochem. 35, 127–340 (1978).

    Article  CAS  Google Scholar 

  14. Wilson, M.B. & Nakane, P.K. in Immunofluorescence and Related Staining Techniques (eds Knapp, W., Holubar, K. & Wick, G.) 215–224 (Elsevier, Amsterdam, 1978).

    Google Scholar 

  15. Hammarström, S. Ann. N.Y. Acad. Sci 234, 183–197 (1974).

    Article  ADS  PubMed  Google Scholar 

  16. Lott, J. A. & Turner, K. Clin. Chem. 21, 1754–1760 (1975).

    CAS  PubMed  Google Scholar 

  17. Mattiasson, B. & Mosbach, K. Meth. Enzym. 44, 335–353 (1976).

    Article  CAS  PubMed  Google Scholar 

  18. Nordbring-Hertz, B. Physiologia Pl. 29, 223–233 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordbring-Hertz, B., Mattiasson, B. Action of a nematode-trapping fungus shows lectin-mediated host–microorganism interaction. Nature 281, 477–479 (1979). https://doi.org/10.1038/281477a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/281477a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing