Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Does lectin–receptor complex formation produce zones of restricted mobility within the membrane?

Abstract

IT is well established that component lipids and proteins are mobile in the plane of the membrane1,2. This lateral mobility could have an important role in the transmission of signals through the membrane. For example, there is much evidence that aggregation of receptors induced by divalent antibodies or by chemical cross-linking can reproduce the biological action of the corresponding ligands3–5. It was shown recently that receptors for monovalent ligands like insulin and epidermal growth factor aggregate into patches on the cell surface after interaction with the corresponding hormone. Clustered receptors accumulate at coated regions of the membrane and become internalised in endocytic vesicles6,7. Aggregation is dependent on receptor occupancy by the active ligand7. Here we show that lateral mobility is also dependent on receptor occupancy. Our approach has been to compare the lateral mobilities of free and ligand-bound receptors using cultured cells placed in a steady electric field. This permits the measurement of lateral long-range (over the whole cell) mobility of the receptors with and without the corresponding ligands8. We have compared this method with the dynamic method of fluorescence photobleaching recovery (FPR) which only permits measurement of the mobility of fluorescent ligand-receptor complexes in the range of the size of the laser beam diameter ( 3 μm)9–12. We have studied the lateral mobility of concanavalin A (Con A) and ricin receptors from non-malignant fibroblasts 3T3 and malignant neuroblastoma NS-20 and C6 glial cells with both techniques. Our results suggest that lectin-receptor formation results in the production of zones of restricted mobility in the membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Frye, L. D. & Edidin, M. J. Cell Sci. 7, 319–335 (1970).

    CAS  PubMed  Google Scholar 

  2. Singer, S. J. & Nicolson, G. L. Science 175, 720–731 (1972).

    Article  ADS  CAS  Google Scholar 

  3. Segal, D., Taurog, J. D. & Metzger, H. Proc. natn. Acad. Sci. U.S.A. 74, 2993–2997 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Kahn, C. R., Baird, K. L., Jarrett, D. B. & Flier, J. S. Proc. natn. Acad. Sci. U.S.A. 75, 4209–4213 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Jacobs, S., Change, K. J. & Cuatrecasas, P. Science 200, 1283–1284 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Maxfield, F., Schlessinger, J., Shechter, Y., Pastan, I. & Willingham, M. C. Cell 14, 805–810 (1978).

    Article  CAS  Google Scholar 

  7. Schlessinger, J. in Physical Chemical Aspects of Celll Surface Events in Cellular Regulation (eds Delisi, C. & Blumenthal, R.) (Elsevier, Amsterdam, 1979).

    Google Scholar 

  8. Poo, M. H., Poo, W. J., & Lam, J. W. J. Cell, Biol. 76, 483–501 (1978).

    Article  CAS  Google Scholar 

  9. Edidin, M., Zagyansky, Y. & Lardner, T. J. Science 191, 466–468 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Zagyansky, Y., Benda, P. & Bisconte, J. C. FEBS Lett. 77, 206–208 (1977).

    Article  CAS  Google Scholar 

  11. Jackobson, K., Wu, E. & Poste, G. Biochim. biophys. Acta 433, 215–222 (1976).

    Article  Google Scholar 

  12. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. Biophys, J., 16, 1055–1069 (1977).

    Article  Google Scholar 

  13. Schlessinger, J., Axelrod, D., Koppel, D. E., Webb, W. W. & Elson, E. L. Science 195, 307–309 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Edidin, M. & Wei, T. J. J. Cell Biol. 75, 475–482 (1977).

    Article  CAS  Google Scholar 

  15. Zagyansky, Y. & Jard, S. Cell (submitted).

  16. Traüble, H. & Overath, P. Biochim biophys. Acta 307, 491–512 (1973).

    Article  Google Scholar 

  17. Jost, P. C., Griffith, O. H., Capaldi, P. & Vanderkoi, G. Proc. natn. Acad. Sci. U.S.A. 10, 480–484 (1973).

    Article  ADS  Google Scholar 

  18. Morch, O. & Barrantes, F. J. Proc. natn. Acad. Sci. U.S.A. 75, 4329–4333 (1978).

    Article  ADS  Google Scholar 

  19. Beadling, L. & Rothfield, L. I. Proc. natn. Acad. Sci. U.S.A. 75, 3669–3672 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Tsong, T. Y. & Yang, C. S. Proc. natn. Acad. Sci. U.S.A. 75, 5955–5959 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Hirata, F., Strittmatter, J. & Axelrod, J. Proc. natn. Acad. Sci. U.S.A. 76, 368–372 (1979).

    Article  ADS  CAS  Google Scholar 

  22. Toyoshima, S. & Osawa, T. J. J. biol. Chem. 250, 1655–1660 (1975).

    CAS  PubMed  Google Scholar 

  23. Oldfield, E. & Chapman, D. FEBS Lett. 23, 285–297 (1972).

    Article  CAS  Google Scholar 

  24. Wallach, O. F. H. Membrane Molecular Biology of Neoplastic Cells (Elsevier, Amsterdam, 1975).

    Google Scholar 

  25. Van Dijck, P. W. M., De Kruijff, B., Van Deenen, L. L. M., De Gier, J. & Demel, R. A. Biochim. biophys. Acta 455, 576–587 (1976).

    Article  CAS  Google Scholar 

  26. De Kruijff, B., Gerritsen, W. J., Oerlemans, A., Demel, R. A. & Van Deenen, L. L. M. Biochim. biophys. Acta 399, 30–43 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ZAGYANSKY, Y., JARD, S. Does lectin–receptor complex formation produce zones of restricted mobility within the membrane?. Nature 280, 591–593 (1979). https://doi.org/10.1038/280591a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/280591a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing