Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Opposite effects of intracellular Ca2+ and glucose on K+ permeability of pancreatic islet cells

Abstract

MANY cells possess a potassium permeability system that is activated by an increase in the concentration of Ca2+ in the cytosol. This Ca2+-sensitive permeability was originally described1 and is best characterised2 in erythrocytes, where its function is still not known. However, a similar mechanism could represent a physiological control of the membrane conductance in excitable tissues such as nerve3,4 or cardiac muscle5. Physiological stimulation of salivary glands results in a Ca2+-mediated release of potassium6 and hyperpolarisation7. In contrast, glucose depolarises pancreatic B cells8,9 by decreasing their potassium permeability10,11, but also stimulates Ca2+ uptake by islet cells12–14. I report here an investigation into the possible interplay between these two effects of glucose. Evidence that intracellular Ca2+ increases the K+ permeability in pancreatic islet cells and that the glucose-stimulated Ca2+ inflow may represent a feedback control of the glucose-mediated decrease in K+ permeability of B cells is presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gardos, G. Acta physiol. hung. 10, 185–193 (1956).

    CAS  PubMed  Google Scholar 

  2. Lew, V. L. & Beaugé, L. in Membrane Transport in Biology Vol. II (eds Giebisch, G., Tosteson, D. C. & Ussing, H. H.) 104–115 (Springer, Berlin, 1979).

    Google Scholar 

  3. Meech, R. W. A. Rev. Biophys. Bioengng 7, 1–18 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Krnjevic, K. Physiol. Rev. 54, 418–540 (1974).

    Article  CAS  Google Scholar 

  5. Isenberg, G. Nature 253, 273–274 (1975).

    Article  ADS  CAS  Google Scholar 

  6. Selinger, Z., Batzri, S., Eimerl, S. & Schramm, M. J. biol. Chem. 248, 369–372 (1973).

    CAS  PubMed  Google Scholar 

  7. Petersen, O. H. Physiol. Rev. 56, 535–577 (1976).

    Article  CAS  PubMed  Google Scholar 

  8. Dean, P. M. & Matthews, E. K. J. Physiol., Lond. 210, 255–264 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meissner, H. P. & Schmelz, H. Pflügers Arch. ges Physiol. 351, 195–206 (1974).

    Article  CAS  Google Scholar 

  10. Henquin, J. C. Nature 271, 271–273 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Sehlin, J. and Täljedal, I.-B. Nature 253, 635–636 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Hellman, B., Sehlin, J. & Täljedal, I.-B. Am. J. Physiol. 221, 1795–1801 (1971).

    CAS  PubMed  Google Scholar 

  13. Malaisse-Lagae, F. & Malaisse, W. J. Endocrinology 88, 72–80 (1971).

    Article  CAS  PubMed  Google Scholar 

  14. Henquin, J. C. & Lambert, A. E. Am. J. Physiol. 228, 1669–1677 (1975).

    CAS  PubMed  Google Scholar 

  15. Henquin, J. C. Biochem. biophys. Res. Commun. 77, 551–556 (1977).

    Article  CAS  PubMed  Google Scholar 

  16. Pfeiffer, D. R., Reed, P. W. & Lardy, H. A. Biochemistry 13, 4007–4014 (1974).

    Article  CAS  PubMed  Google Scholar 

  17. Sehlin, J. Biochem. J. 156, 63–69 (1976).

    Article  CAS  Google Scholar 

  18. Sugden, M. C. & Ashcroft, S. J. H. Diabetologia 15, 173–180 (1978).

    Article  CAS  PubMed  Google Scholar 

  19. Meissner, H. P. J. Physiol., Paris 72, 757–767 (1976).

    CAS  Google Scholar 

  20. Meissner, H. P. & Preissler, M. in Treatment of Early Diabetes (eds Camerini-Davalos, R. A. & Hanover, B.) (Plenum, New York, in the press).

  21. Atwater, I. & Beigelman, P. M. J. Physiol. Paris 72, 769–786 (1976).

    CAS  PubMed  Google Scholar 

  22. Matthews, E. K. in Hormones and Cell Regulation (eds Dumont, J. & Nunez, J.) 57–76 (North-Holland, Amsterdam, 1977).

    Google Scholar 

  23. Milner, R. D. G. & Hales, C. N. Diabetologia 3, 47–49 (1967).

    Article  CAS  PubMed  Google Scholar 

  24. Meissner, H. P. & Henquin, J. C. Diabetes 27, Suppl. II, 457 (1978).

    Google Scholar 

  25. Henquin, J. C., Horemans, B., Nenquin, M., Verniers, J. & Lambert, A. E. FEBS Lett. 57, 280–284 (1975).

    Article  CAS  PubMed  Google Scholar 

  26. Lew, V. L. & Ferreira, H. G. Nature 263, 336–338 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HENQUIN, J. Opposite effects of intracellular Ca2+ and glucose on K+ permeability of pancreatic islet cells. Nature 280, 66–68 (1979). https://doi.org/10.1038/280066a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/280066a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing