Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Persisting DNA synthesis in SV40-transformed cells in the presence of cycloheximide

Abstract

INHIBITION of protein synthesis decreases the rate of DNA synthesis in both prokaryotes and eukaryotes. In prokaryotes, DNA synthesis is dependent on protein synthesis only for the initiation of replication1. In the case of eukaryotes, reduction of DNA synthesis occurs rapidly after the inhibition of protein synthesis2,3, although the mechanism of the tight coupling between protein and DNA synthesis is unclear. The DNA which is synthesised at a reduced rate in these conditions is basically normal except that the elongation step seems to be modified2,3. Newly replicated DNA synthesised in the presence of cycloheximide seems to be associated with less chromatin protein, because chromatin synthesised in these conditions is more susceptible to digestion by DNases3,4. T antigen of simian virus 40 (SV40) is a product of the A gene of the virus5 and has been shown to have a role in the establishment and maintenance of transformation6–9. There is evidence that T antigen is required for the initiation of viral DNA replication10 and the induction of synthesis of cell DNA11–15. It has also been suggested that T antigen initiates DNA synthesis in transformed cells and thereby serves to retain those cells in the transformed state10,16–18. Recently, T antigen was purified almost to homogeneity, and its microinjection into quiescent mouse cells induced DNA synthesis19. However, the mechanism of action of T antigen in cell DNA synthesis remains to be clarified20. If T antigen acts on cellular DNA synthesis, SV40-transformed cells which contain T antigen may behave differently from other cell lines in their ability to continue DNA synthesis in conditions of protein synthesis inhibition. We report here that DNA synthesis in SV40-transformed cells continued at an almost normal rate while protein synthesis was inhibited by cycloheximide, whereas DNA synthesis in malignant tumour cells without T antigen did not continue in these conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hanawalt, P. C., Maaløe, O., Cummings, D. J. & Schaechter, M. J. molec. Biol. 3, 156–165 (1961).

    Article  CAS  PubMed  Google Scholar 

  2. Weintraub, H. & Holtzer, H. J. molec. Biol. 66, 13–35 (1972).

    Article  CAS  PubMed  Google Scholar 

  3. Searle, R. & Simpson, R. J. molec. Biol. 94, 479–501 (1975).

    Article  Google Scholar 

  4. Weintraub, H. Cell 9, 419–422 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. Tenen, D. G., Baygell, P. & Livingston, D. M. Proc. natn. Acad. Sci. U.S.A. 72, 4351–4355 (1975).

    Article  ADS  CAS  Google Scholar 

  6. Martin, R. G. & Chou, J. Y. J. Virol. 15, 599–612 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tegtmeyer, P. J. J. Virol. 15, 613–618 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Brugg, J. S. & Butel, J. S. J. Virol. 15, 619–635 (1975).

    Google Scholar 

  9. Osborn, M. & Weber, K. J Virol. 15, 636–644 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tegtmeyer, P. J. Virol. 10, 591–598 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chou, J. Y. & Martin, R. G. J. Virol. 15, 145–150 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fox, R. O. & Levine, A. J. J. Virol. 7, 473–477 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gershon, D., Sachs, L. & Wincour, E. Proc. natn. Acad. Sci. U.S.A. 56, 918–925 (1966).

    Article  ADS  CAS  Google Scholar 

  14. Henry, P., Black, P. H., Oxman, M. N. & Weissman, S. M. Proc. natn. Acad. Sci. U.S.A. 56, 1170–1176 (1966).

    Article  ADS  CAS  Google Scholar 

  15. Smith, H. S., Scher, C. D. & Todaro, G. J. Virology 44, 359–370 (1970).

    Article  Google Scholar 

  16. Martin, R. G., Chou, J. Y., Avila, J. & Saral, R. Cold Spring Harb. Symp. quant. Biol. 39, 17–24 (1974).

    Article  Google Scholar 

  17. Martin, R. G. & Oppenheim, A. Cell 11, 859–869 (1977).

    Article  CAS  PubMed  Google Scholar 

  18. Oppenheim, A. & Martin, R. G. J. Virol. 25, 450–452 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tjian, R., Fey, G. & Graessmann, A. Proc. natn. Acad. Sci. U.S.A. 75, 1279–1283 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Levine, A. J. Biochim. biophys. Acta 458, 213–241 (1976).

    CAS  PubMed  Google Scholar 

  21. Todaro, G. J., Green, H. & Swift, M. C. Science 153, 1252–1254 (1966).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Sheinin, R. & Humbert, J. A. Rev. Biochem. 47, 277–316 (1978).

    Article  CAS  Google Scholar 

  23. Henderson, I. C. & Livingston, D. M. Cell 3, 65–70 (1974).

    Article  CAS  PubMed  Google Scholar 

  24. Pope, J. H. & Rowe, W. P. J. exp. Med. 120, 121–131 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carroll, R. B., Hager, L. & Dulbecco, R. Proc. natn. Acad. Sci. U.S.A. 71, 3754–3757 (1974).

    Article  ADS  CAS  Google Scholar 

  26. D'Alisa, R. M. & Gershey, E. L. Nature 274, 164–166 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Elgin, S. C. R. Meth. Enzym. 15, 144–160 (1975).

    Article  Google Scholar 

  28. Lowry, O. H., Rosenbrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

IDE, T., OHTA, T., SHINOHARA, Y. et al. Persisting DNA synthesis in SV40-transformed cells in the presence of cycloheximide. Nature 278, 264–265 (1979). https://doi.org/10.1038/278264a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/278264a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing