Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RNase H hydrolysis of the 5′ terminus of the avian sarcoma virus genome during reverse transcription

Abstract

NUCLEOTIDE sequence analyses of the ends of the avian retro-virus genome 1–6 have confirmed predictions of the terminally redundant nature of the viral RNA7,8. These studies have also provided the basis for several models of retrovirus proviral DNA synthesis, all of which have implicated the RNase H activity associated with viral reverse transcriptase in a functional role in the continued and uninterrupted DNA transcription of the viral RNA genome1–8. According to these models DNA synthesis initiates on the tRNAtrp primer molecule located close to the 5′ end of the viral genome9,10 and transcription proceeds to the terminus. Presumably, at this time a suitable substrate is available for the retrovirus RNase H, which is a processive exoribonuclease requiring an unblocked terminus of the RNA moiety of RNA:DNA hybrids for activity11–13. Release of the terminally repeated nucleotides from the hybrid region of the viral genome would create ‘sticky ends’ with the tRNAtrp-initiated DNA at the 5′ end capable of hybridising to the terminally redundant RNA genomic sequences at the 3′ end of the same or a second 35S RNA subunit. This latter reaction would facilitate uninterrupted transcription from the 5′ to the 3′ end of the viral genome resulting in genome-length DNA transcripts15–20. We have recently obtained evidence indicating that DNA transcripts much longer than the distance between the tRNAtrp primer molecule and the 5′ end of the viral genome and containing nucleotide sequences representing the 3′ region of the viral genome can be synthesised by the reverse transcriptase in vitro21. Thus, it seems that DNA synthesis initiated at the 5′ end of the viral genome continues at the 3′ end in enzymatic reactions in vitro. If the avian sarcoma virus (ASV) reverse transcriptase-associated RNase H activity is required for the continued transcription of the viral genome at the 3′ end as proposed in above models, then release of 5′ terminally-located ribonucleotides should be apparent during DNA synthesis in vitro. We report here that ribonucleotides are indeed released from the viral RNA genome during reverse transcription, and that hydrolysis occurs at a specific site near the 5′ terminus. These studies exemplify the first demonstration of RNase H hydrolysis occurring during reverse transcription of the retro-virus RNA genome in vitro and implicate functional role for this activity during replication of retroviruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Haseltine, W. A., Maxam, A. L. & Gilbert, W. Proc. natn. Acad Sci. U.S.A. 74, 989–993 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Schwartz, D. E., Zamecnik, P. C. & Weith, H. L. Proc. natn. Acad. Sci. U.S.A. 74, 994–998 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Coffin, J. M. & Haseltine, W. Proc. natn. Acad. Sci. U.S.A. 74, 1908–1912 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Collett, M. S., Dierks, P., Cahill, J. F., Faras, A. J. & Parsons, J. T. Proc. natn. Acad. Sci. U.S.A. 74, 2389–2392 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Shine, J., Czernilofsky, A., Friedrich, R., Bishop, J. M. & Goodman, H. M. Proc. natn. Acad. Sci. U.S.A. 74, 1473–1477 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Stoll, E., Billeter, M. A., Palmenberg, A. & Weissmann, C. Cell 12, 57 (1978).

    Article  Google Scholar 

  7. Collett, M. S. & Faras, A. J. Proc. natn. Acad. Sci. U.S.A. 73, 1329–1332 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Coffin, J. M. Cancer Res. 36, 4282–4288 (1976).

    CAS  PubMed  Google Scholar 

  9. Taylor, J. M. & Illmensee, R. J. Virol. 16, 553–558 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Staskus, K., Collett, M. & Faras, A. J. Virology 71, 162–168 (1976).

    Article  CAS  PubMed  Google Scholar 

  11. Leis, J., Berkower, I. & Hurwitz, J. Proc. natn. Acad. Sci. U.S.A. 70, 466–470 (1973).

    Article  ADS  CAS  Google Scholar 

  12. Grandgenett, D., Gerard, G. & Green, M. J. Virol. 10, 1136–1142 (1973).

    Google Scholar 

  13. Verma, I. J. Virol. 15, 843–854 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Collett, M. S. & Faras, A. J. Virology (in the press).

  15. Collett, M. S. & Faras, A. J. J. Virol. 16, 1220–1228 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rothenberg, E. & Baltimore, D. J. Virol. 17, 168–174 (1976).

    CAS  PubMed Central  Google Scholar 

  17. Junghans, R. P., Duesberg, P. & Knight, C. A. Proc. natn. Acad. Sci. U.S.A. 72, 4895–4899 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Rothenberg, E. & Baltimore, D. J. Virol. 21, 168–178 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Collett, M. S. & Faras, A. J. J. Virol. 22, 86–96 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Haseltine, W. A., Kleid, D. G., Panet, A., Rothenberg, E. & Baltimore, D. J. molec. Biol. 106, 109–131 (1976).

    Article  CAS  PubMed  Google Scholar 

  21. Leis, J. et al. Virology (in the press).

  22. Brewer, L. & Wells, R. J. Virol. 14, 1494–1502 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Collett, M. S. & Faras, A. J. J. Virol. 17, 291–295 (1976).

    CAS  PubMed Central  Google Scholar 

  24. Modak, M. & Marcus, S. J. Virol. 22, 243–246 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cashion, L. M., Joho, R. H., Planitz, M. A., Billeter, M. A. & Weissman, C. Nature 262, 186–190 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Molling, K. et al. Nature new Biol. 234, 240–243 (1971).

    Article  CAS  PubMed  Google Scholar 

  27. Keller, W. & Crouch, R. Proc. natn. Acad. Sci. U.S.A. 69, 3360–3364 (1972).

    Article  ADS  CAS  Google Scholar 

  28. Grandgenett, D., Gerard, G. & Green, M. J. Virol. 10, 1136–1142 (1973).

    Google Scholar 

  29. Darlix, J., Bromley, P. & Spahr, P. J. Virol. 22, 118–129 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Faras, A. J. & Dibble, N. A. Proc. natn. Acad. Sci. U.S.A. 72, 859–863 (1975).

    Article  ADS  CAS  Google Scholar 

  31. Leong, J. et al. J. Virol. 9, 891–902 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Furuichi, Y., Shatkin, A. J., Starnezer, E. & Bishop, J. M. Nature 257, 618–620 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

COLLETT, M., DIERKS, P., PARSONS, J. et al. RNase H hydrolysis of the 5′ terminus of the avian sarcoma virus genome during reverse transcription. Nature 272, 181–184 (1978). https://doi.org/10.1038/272181a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/272181a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing