Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

λ-Transition between normal and superfluid 4He in the high–speed rotating frame

Abstract

THE rotating helium cryostat (1-m diameter, 3,000 r.p.m.) at Southampton provides a novel way of studying the behaviour of liquid helium. The centrifugal acceleration fields (up to 5,000g at the periphery) enable pressure differences up to 20 bar to be generated in radial ducts containing liquid helium between the axis and the periphery of the rotor. We have recently rotated the cryostat at temperatures down to 1.8 K, well below the λ-transition to superfluid helium. The λ-transition temperature is suppressed by increasing pressure so that the rotor becomes a unique tool for the study of the phase transition boundary between normal helium He(I) and superfluid helium He(II). Here we report observations of a step-like temperature difference of several tens of millikelvin across the boundary. The temperature jump can be explained in terms of the positive value of the volume coefficient of expansion for He(I) over a finite temperature interval above the λ-line, and the presence of a non-convecting intermediate state of finite thickness separating the two phases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Haseler, L. E., Scurlock, R. G. & Thornton, G. K. Cryogenics 16, 331–336 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Haseler, L. E., Scurlock, R. G. & Utton, D. B. Cryogenics 17, 703–706 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Maynard, J. Phys. Rev. 14 B, 3868–3891 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Ahlers, G. Phys. Rev. 8 B, 530–568 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Lounasmaa, O. V. Cryogenics 1, 212–221 (1961).

    Article  ADS  CAS  Google Scholar 

  6. McCarty, R. D. J. phys. Chem. 2, 923–1042 (1973).

    CAS  Google Scholar 

  7. London, H. Proc. R. Soc. A171, 484 (1939).

    ADS  CAS  Google Scholar 

  8. Ahlers, G. Phys. Rev. 171, 275–282 (1968).

    Article  ADS  CAS  Google Scholar 

  9. Enrenfest, P. Commun. Leiden Suppl. no. 75b Proc. R. Acad. Amsterdam 36, 153 (1933).

    Google Scholar 

  10. Scurlock, R. G. & Thornton, G. K. Int. J. Heat Mass Transfer 20, 31–40 (1977).

    Article  CAS  Google Scholar 

  11. Keesom, W. H. & Keesom, A. P. Commun. Leiden Suppl. no. 76B Physica, Grav. 1, 128 (1933).

    Article  ADS  CAS  Google Scholar 

  12. Lounasmaa, O. V. & Kaunisto, L. Ann. Acad. Sci. Fennicae AVI no. 59 (1960).

  13. Ahlers, G. Phys. Rev. 8B, 530–568 (1973).

    Article  ADS  CAS  Google Scholar 

  14. Wilks, J. The Properties of Liquid & Solid Helium, 296 (1967).

    Google Scholar 

  15. Caspi, S., Lee, J. Y. & Frederking, T. H. K. Cryogenic Engng Conf. Boulder, Colorado (1977).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SCURLOCK, R., UTTON, D. λ-Transition between normal and superfluid 4He in the high–speed rotating frame. Nature 272, 148–151 (1978). https://doi.org/10.1038/272148b0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/272148b0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing