Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extensive reverse transcription of RSV genome by nucleic acid-binding protein

Abstract

THE discovery of reverse transcriptase1,2 offered the possibility of using in vitro synthesis to study the replication of RNA tumour virus genomes in molecular detail. Attempts to study DNA provirus formation in vitro, however, have encountered serious obstacles: poor efficiency of transcription, small DNA products, and unequal representation of the viral RNA sequences in the DNA product have been common findings3. These difficulties in copying RNA into DNA have led to suggestions that cellular factors, such as ligases or unwinding proteins might be necessary to assist reverse transcriptase in copying the viral RNA genome into a complete DNA transcript4,5. Binding (unwinding) proteins involved in DNA synthesis are well known in bacteria6,7 and have also been described in mammalian systems8. We reported previously the isolation of a DNA binding protein from transformed chicken cells and its stimulating effect on reverse transcriptase activities5. Here we present evidence that, in the presence of the binding protein, purified reverse transcriptase from Rous sarcoma virus (RSV) synthesised an extensive, possibly complete complementary transcript of DNA from the viral RNA genome in a totally reconstituted reaction system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baltimore, D. Nature 226, 1209–1211 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Temin, H. M. & Mizutani, S. Nature 226, 1211–1213 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Green, M. & Gerard, S. F. Prog. Nucleic Acids Res. molec. Biol. 14, 187–334 (1974).

    Article  CAS  Google Scholar 

  4. Temin, H. M. & Baltimore, D. Adv. Virus Res. 17, 129–186 (1972).

    Article  CAS  PubMed  Google Scholar 

  5. Hung, P. P. & Lee, S. G. Nature 259, 499–502 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Sigal, N., Dalius, H., Kornberg, T., Gefter, M. L. & Alberts, B. M. Proc. natn. Acad. Sci. U.S.A. 69, 3534–3541 (1972).

    Article  ADS  Google Scholar 

  7. Alberts, B. M. & Frey, L. Nature 227, 1313–1318 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Herrick, G. & Alberts, B. W. J. biol. Chem. 251, 2124–2132 (1976).

    CAS  PubMed  Google Scholar 

  9. Tsai, R. L. & Green, H. J. molec. Biol. 73, 307–316 (1973).

    Article  CAS  PubMed  Google Scholar 

  10. Gradgenett, D. P., Gerard, G. F. & Green, M. Proc. natn. Acad. Sci. U.S.A. 70, 230–234 (1973).

    Article  ADS  Google Scholar 

  11. Aposhian, H. V. & Kornberg, A. J. biol. Chem. 237, 516–525 (1962).

    Google Scholar 

  12. Holloman, W. K. & Holliday, R. J. biol. Chem. 248, 8107–8113 (1973).

    CAS  PubMed  Google Scholar 

  13. Delius, H., Duesberg, P. H. & Mangel, W. F. Cold Spring Harb. Symp. quant. Biol. 39, 835–843 (1975).

    Article  PubMed  Google Scholar 

  14. Marmur, J. & Doty, P. Nature 183, 1427–1429 (1959).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Staskus, K. A., Colletti, M. S. & Faras, A. J. Virology 71, 162–168 (1976).

    Article  CAS  PubMed  Google Scholar 

  16. Taylor, J. M. & Illmensee, R. J. Virol. 16, 553–558 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Taylor, J. M. et al. Biochemistry 12, 460–467 (1973).

    Article  CAS  PubMed  Google Scholar 

  18. Robinson, W. S., Robinson, H. L. & Duesberg, P. H. Proc. natn. Acad. Sci. U.S.A. 58, 825–834 (1967).

    Article  ADS  CAS  Google Scholar 

  19. Rothenberg, E. & Baltimore, D. J. Virol. 21, 168–178 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ando, T. Biochim. biophys. Acta 114, 158–168 (1966).

    Article  CAS  PubMed  Google Scholar 

  21. Junghans, P., Duesberg, P. H. & Knight, C. A. Proc. natn. Acad. Sci. U.S.A. 72, 4895–4899 (1975).

    Article  ADS  CAS  Google Scholar 

  22. Collett, M. S. & Faras, A. J. J. Virol. 16, 1220–1228 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Haseltine, W. A., Kleid, D. G., Panet, A., Rothenberg, E. & Baltimore, D. J. molec. Biol. 106, 109–131 (1976).

    Article  CAS  PubMed  Google Scholar 

  24. Sen, A., Sherr, C. J. & Todaro, G. J. Cell 7, 21–32 (1976).

    Article  CAS  PubMed  Google Scholar 

  25. Adesnik, M. Meth. Virol. 5, 125–177 (1971).

    Article  Google Scholar 

  26. Canaani, E. & Duesberg, P. J. Virol. 10, 23–31 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Maizel, J. V. Jr, Meth. Virol. 5, 179–245 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LEE, S., HUNG, P. Extensive reverse transcription of RSV genome by nucleic acid-binding protein. Nature 270, 366–369 (1977). https://doi.org/10.1038/270366a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/270366a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing