Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two enzymes are required for strand incision in repair of alkylated DNA

Abstract

THE excision-repair model for DNA repair involves the incision by an endonuclease of the phosphodiester chain adjacent or close to the damage and subsequent excision by an exonuclease of the defective nucleotide(s) (for review see ref. 1). Specific endonuclease for ultraviolet-induced damage1 and for apurinic sites have been isolated associated with2,3, or without an exonuclease activity (refs 4–6 and J.L. and L. Grossman, in preparation). Another class of enzymes does not incise DNA, but recognises and excises defective bases as uracil in the DNA. Belonging to this class of DNA N-glycosidases, is the enzyme described here which excises 3-methyladenine (3-MeAde) from alkylated DNA. This base excision repair is a preparatory step for the nucleotide excision repair describedabove. It has been claimed that endonuclease II of Escherichia coli8 both excises the alkylated bases 3-MeAde and O6-methylguanine (O6-MeGua) and incises DNA atapurinic sites. This enzyme also recognises a number of additional substrates9–11. To establish the (precise mechanism of incision of alkylated DNA we have purified two enzymes from Micrococcus luteus, a DNA N-glycosidase, which excises 3-MeAde, and an endonuclease for apurinic sites. We report here a reconstruction experiment showing that incision of DNA treated with carcinogenic and mutagenic compound methyl methanesulphonate (MMS) is a two-step mechanism involving the sequential action of these two enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Grossman, L., Braun, A., Feldberg, R. & Mahler, I. A. Rev. Biochem. 44 19–43 (1975).

    Article  CAS  Google Scholar 

  2. Hadi, S. M. & Goldthwait, D. A. Biochemistry 10, 4986–4994 (1971).

    Article  CAS  PubMed  Google Scholar 

  3. Verly, W. G. & Rassart, E. J. biol. Chem. 250, 8214–8219 (1975).

    CAS  PubMed  Google Scholar 

  4. Ljungquist, S., Nyberg, B. & Lindahl, T. FEBS Lett. 57, 169–171 (1975).

    Article  CAS  PubMed  Google Scholar 

  5. Ljungquist, S. J. biol. Chem. 252, 2808–2814 (1977).

    CAS  PubMed  Google Scholar 

  6. Thibodeau, L. & Verly, W. G. FEBS Lett. 69, 183–185 (1976).

    Article  CAS  PubMed  Google Scholar 

  7. Lindahl, T. Nature 259, 64–66 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Kiritikar, D. M. & Goldthwait, D. A. Proc. natn. Acad. Sci. U.S.A. 71, 2022–2026 (1974).

    Article  ADS  Google Scholar 

  9. Hadi, S. M., Kirtikar, D. & Goldthwait, D. A. Biochemistry 12, 2747–2754 (1973).

    Article  CAS  PubMed  Google Scholar 

  10. Kirtikar, D. M., Slaughter, J. & Goldthwait, D. A. Biochemistry 14, 1235–1243 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. Kirtikar, D. M., Dipple, A. & Goldthwait, D. A. Biochemistry 14, 5548–5553 (1975).

    Article  CAS  PubMed  Google Scholar 

  12. Laval, F. Proc. natn. Acad. Sci. U.S.A. 71, 4965–4969 (1974).

    Article  ADS  CAS  Google Scholar 

  13. Kaplan, J. C., Kushner, S. R. & Grossman, L. Proc. natn. Acad. Sci. U.S.A. 63, 144–151 (1969).

    Article  ADS  CAS  Google Scholar 

  14. Arndt-Jovin, D. J., Jovin, T. M., Bähr, W., Frischauf, A. M. & Marquardt, M. Eur. J. Biochem. 54, 411–418 (1975).

    Article  CAS  PubMed  Google Scholar 

  15. Laval, J. & Paoletti, C. Biochemistry 11, 3596–3603 (1972).

    Article  CAS  PubMed  Google Scholar 

  16. Uhlenhopp, E. L. & Krasna, A. I. Biochemistry 10, 3290–3295 (1971).

    Article  CAS  PubMed  Google Scholar 

  17. Lawley, P. D. & Shah, S. A. Biochem. J. 128, 117–132 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bottger, M. & Kuhn, W. Biochim. biophys. Acta 254, 407–411 (1971).

    Article  CAS  PubMed  Google Scholar 

  19. Lindahl, T. & Anderson, A. Biochemistry 11, 3618–3623 (1972).

    Article  CAS  PubMed  Google Scholar 

  20. Strauss, B., Coyle, M. & Robbins, M. Cold Spring Harb. Symp. quant. Biol. 33, 277–287 (1968).

    Article  CAS  PubMed  Google Scholar 

  21. Lawley, P. D. & Shah, S. A. Chem.-Biol. Interact. 5, 286–288 (1972).

    Article  CAS  PubMed  Google Scholar 

  22. Lawley, P. D. & Warren, W. Chem.-Biol. Interact. 12, 211–220(1976).

    Article  CAS  PubMed  Google Scholar 

  23. Teebor, G. W. & Duker, N. J. Nature 258, 544–547 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Weiss, B. J. biol. Chem. 251, 1896–1901 (1976).

    CAS  PubMed  Google Scholar 

  25. Kirtikar, D. M., Cathcart, G. R. & Goldthwait, D. A. Proc. natn. Acad. Sci. U.S.A. 73, 4324–4328 (1976).

    Article  ADS  CAS  Google Scholar 

  26. Kushner, S. R., Kaplan, J. C., Ono, H. & Grossman, L. Biochemistry 10, 3325–3334 (1971).

    Article  CAS  PubMed  Google Scholar 

  27. Hamilton, L., Mahler, I. & Grossman, L. Biochemistry 13, 1886–1896 (1974).

    Article  CAS  PubMed  Google Scholar 

  28. Lindahl, T., Ljunguist, S., Siegert, W., Nyberg, B. & Sperens, B. J. biol. Chem. (in the press).

  29. Linsley, W. S., Penhoet, E. E. & Linn, S. J. biol. Chem. 252, 1235–1242 (1977).

    CAS  PubMed  Google Scholar 

  30. Feldberg, R. S. & Grossman, L. Biochemistry 15, 2402–2408 (1976).

    Article  CAS  PubMed  Google Scholar 

  31. Doniger, J. & Grossman, L. J. biol. Chem. 251, 4579–4587 (1976).

    CAS  PubMed  Google Scholar 

  32. Pegg, A. E. Adv. Cancer Res. 25, 195–269 (1977).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LAVAL, J. Two enzymes are required for strand incision in repair of alkylated DNA. Nature 269, 829–832 (1977). https://doi.org/10.1038/269829a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/269829a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing