Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Catecholamine hormone receptors are reduced on chronic lympocytic leukaemic lymphocytes

Abstract

ADENYLATE cyclase (EC 4.6.1.1.) is a bifunctional enzyme that responds to biological signals such as hormones as well as catalysing the synthesis of cyclic 3′,5′-AMP. Several reports indicate that the hormonal responsiveness of this enzyme in transformed or neoplastic cells is altered1–3. This may explain the low cyclic AMP levels that have been associated with the unregulated cellular proliferation seen in transformed cells4–6. There is also evidence to implicate cyclic AMP in normal lymphocyte activation7,8. Comparison of circulating lymphocytes from chronic lymphocytic leukaemia (CLL) patients with those from normal human controls indicates that cyclic AMP levels9,10, cyclic nucleotide phosphodiesterase11,12 and adenylate cyclase13 activities are changed in the CLL lymphocyte. The membrane enzyme activity of 5′ nucleotidase14 as well as complement15, antigen16 and lectin17 binding are also altered in the CLL plasma membrane. The observation that catecholamine hormone (β-adrenergic) responsiveness is depressed in CLL lymphocytes is further evidence for a functionally altered plasma membrane13. Until now, it has not been possible to identify the molecular lesion responsible for the reduced catecholamine sensitivity. But, with the availability18–20 of radiolabelled molecules that bind efficiently and directly to specific β-adrenergic hormone receptor sites (for example (—) 3H-dihydroalprenolol), we can now determine whether the CLL adenylate cyclase defect occurs in the β-adrenergic hormone-receptor complex, in the transducing mechanism that couples the receptor to the catalytic component, or in the intrinsic catalytic mechanism. We show here that the number of β-adrenergic hormone receptor sites is reduced on CLL lymphocyte membranes while the catalytic capacity of the cyclase enzyme is normal. The low density of catecholamine hormone receptors could account for the altered cyclic AMP metabolism and may contribute to the unregulated growth of CLL lymphocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Criss, W. E. & Morris, H. P. Cancer Res. 36, 1740–1743 (1976).

    CAS  PubMed  Google Scholar 

  2. Christofferson, T. & Øye, I. Endocrinology 77, 67–71 (1974).

    Google Scholar 

  3. Sheppard, J. R., Cromwell, R. C., Meyers, R. & McLaughlin, W. in The Role of Cyclic Nucleotides in Carcinogenesis (eds Schultz, J. & Gratzner, H. G.), 19–37 (Academic, New York, 1973).

    Google Scholar 

  4. Sheppard, J. R. Nature new Biol. 236, 14–17 (1972).

    Article  CAS  Google Scholar 

  5. Pastan, I. H., Johnson, G. S. & Anderson, W. G. A. Rev. Biochem. 44, 491–522 (1975).

    Article  CAS  Google Scholar 

  6. Ryan, W. L. & Heidrick, M. L. in Adv. Cyclic Nucleotide Res. 4, 81–116 (1974).

    CAS  PubMed  Google Scholar 

  7. Abell, C. W. & Monahan, T. M. J. Cell Biol. 59, 549–558 (1973).

    Article  CAS  Google Scholar 

  8. Cyclic AMP, Cell Growth and the Immune Response (eds Braun, W., Lichtenstein, L. M. & Parker, C. W.) (Springer, New York, 1974).

  9. Monahan, T. M., Marchand, N. W., Fritz, R. R. & Abell, C. W. Cancer Res. 35, 2540–2547 (1975).

    CAS  PubMed  Google Scholar 

  10. Smith, J. W., Steiner, A. L., Newberry, W. M. & Parker, C. W. J. clin. Invest. 50, 423–441 (1971).

    Google Scholar 

  11. Hait, W. N. & Weiss, B. Nature 259, 321–323 (1976).

    Article  ADS  CAS  Google Scholar 

  12. Scher, N. S. et al. Cancer Res. 36, 3958–3962 (1976).

    CAS  PubMed  Google Scholar 

  13. Polgar, P., Vera, J. C., Kelley, P. R. & Rutenburg, A. M. Biochim. biophys. Acta 297, 378–383 (1973).

    Article  CAS  Google Scholar 

  14. Quagliata, F., Faig, D., Conklyn, M. & Silber, R. Cancer Res. 34, 3197–3202 (1974).

    CAS  PubMed  Google Scholar 

  15. Pincus, S., Bianco, C. & Nussenzweig, V. Blood 40, 303–310 (1972).

    CAS  PubMed  Google Scholar 

  16. Bentwich, A., Polliack, A. & Douglas, S. D. Israel J. med. Sci. 12, 304–324 (1976).

    CAS  PubMed  Google Scholar 

  17. Novogrodsky, A., Biniaminov, M., Ramot, B. & Katchalski, E. Blood 40, 311–320 (1972).

    CAS  PubMed  Google Scholar 

  18. Maguire, M. E., Wirlund, R. A., Anderson, H. J. & Gilman, A. G. J. biol. Chem. 251, 1221 (1976).

    CAS  PubMed  Google Scholar 

  19. Brown, E. M., Aurbach, G. D., Hauser, D. & Troxler, F. J. biol. Chem. 251, 1232 (1976).

    CAS  PubMed  Google Scholar 

  20. Mukherjee, C., Coverstone, M., Caron, J. G. & Lefkowitz, R. J. J. biol. Chem. 750, 4869 (1975).

    Google Scholar 

  21. Boyum, A. Scand. J. clin. Lab. Invest. 21, 77 (1968).

    Article  CAS  Google Scholar 

  22. Kaplan, M. E., Woodson, M. & Clark, C. in In Vitro Methods in Cell Mediated and Tumor Immunity (eds Bloom, B. & David, J. R.) 83–88 (Academic, New York, 1976).

    Google Scholar 

  23. Brown, B. L. Biochem. J. 121, 561 (1971).

    Article  CAS  Google Scholar 

  24. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265 (1951).

    CAS  Google Scholar 

  25. Williams, L. T., Snyderman, R. & Lefkowitz, R. J. J. clin. Invest. 57, 149 (1976).

    Article  CAS  Google Scholar 

  26. Todaro, G. J., Delarco, J. E. & Cohen, S. Nature 264, 26–31 (1976).

    Article  ADS  CAS  Google Scholar 

  27. Thomopoulos, P., Roth, J., Lovelace, E. & Pastan, I. Cell 8, 412–423 (1976).

    Article  Google Scholar 

  28. Sheppard, J. R. Proc. natn. Acad. Sci. U.S.A. 74, 1091–1094 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SHEPPARD, J., GORMUS, R. & MOLDOW, C. Catecholamine hormone receptors are reduced on chronic lympocytic leukaemic lymphocytes. Nature 269, 693–695 (1977). https://doi.org/10.1038/269693a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/269693a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing