Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interstellar grains as possible cold seeds of life

Abstract

As long as entropy ceases to play any part in equilibria when the temperature approaches absolute zero, all exothermic reactions—up to the formation of the most complex biopolymers—become thermodynamically profitable. In such conditions the reaction rate starts to play a decisive part in the observability of chemical transformations. According to classical views (Arrhenius law) all reactions should completely stop when T→0 and therefore the cold synthesis of biologically active substances is absolutely excluded. The phenomenon of a low-temperature limit to chemical reaction rates found recently, however, in the studies of radiation-induced polymerisation of formaldehyde1–3, showing the existence of chemical reactivity even at T→0, obviously caused by quantum-mechanical molecular tunnelling, makes it possible to combine complete suppression of the entropy term in equilibria with an observable rate of exothermic chemical reactions, for example, of chain polymerisation (or any other integration of molecules) induced by light or ionising radiation. Thus molecular tunnelling suggests the possibility of a cold pre-history of life1–3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goldanskii, V. I., Frank-Kamenetskii, M. D. & Barkalov, I. M. Science 182, 1344 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Goldanskii, V. I. Russian chem. Rev. 44, 1019 (1975).

    Article  ADS  Google Scholar 

  3. Goldanskii, V. I. A. Rev. phys. Chem. 27, 85 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Wickramasinghe, N. C. Nature 252, 452 (1974).

    Article  ADS  Google Scholar 

  5. Wickramasinghe, N. C. Mon. Not. R. astr. Soc. 170, 11 (1975).

    Article  ADS  Google Scholar 

  6. Mendis, D. A. & Wickramasinghe, N. C. Astrophys. Space Sci. 33, L13 (1975).

    Article  Google Scholar 

  7. Hoyle, F. & Wickramasinghe, N. C. Nature 268, 610–612 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Goldanskii, V. I. Nature 268, 612–613 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Watson, W. D. Rev. mod. Phys. 48, 513 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Herbst, E. & Klemperer, W. Phys. Today 29, 32 (1976).

    Article  CAS  Google Scholar 

  11. Greenberg, J. M. Ned. Tijdschr. Natuurk 42, 117 (1976).

    CAS  Google Scholar 

  12. Millar, T. J. & Williams, D. A. Mon. Not. R. astr. Soc. 173, 527 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Greenberg, J. M. in Molecules in the Galactic Environment (eds Gordon, M. A. & Snyder, L. E.) 93 (Wiley, New York,1973).

    Google Scholar 

  14. Sagan, C. Nature 238, 77(1972).

    Article  ADS  CAS  Google Scholar 

  15. Rank, D. M., Townes, C. H. & Welch, W. J. Science 174, 4041 (1971).

    Article  Google Scholar 

  16. Greenberg, J. M. Astrophys. J. 189, L81(1974).

    Article  ADS  CAS  Google Scholar 

  17. Jackson, J. L. J. chem. Phys. 31, 154 (1959); 31, 722 (1959).

    Article  ADS  CAS  Google Scholar 

  18. Adadurov, G. A. et al. Vysokomolek. Soyedin (Russ.) 7, 180 (1965).

    CAS  Google Scholar 

  19. Baratova, L. A., Goldanskii, V. I., Kosygin, M. Yu. & Yampolskii, P. A. Biokhimiya (Russ.) 35, 1216 (1970).

    CAS  Google Scholar 

  20. Goldanskii, V. I., Ignatovich, T. N., Kosygin, M. Yu. & Yampolskii P. A. Dokl. Akad. Nauk. SSSR (Russ.) 207, 218 (1972).

    CAS  Google Scholar 

  21. Hoyle, F. & Wickramasinghe, N. C. Nature 264, 45 (1976).

    Article  ADS  CAS  Google Scholar 

  22. Shmidt, O. Yu. Dokl. Akad. Nauk. SSSR (Russ.) 45, 245 (1944).

    Google Scholar 

  23. Gurevich, L. E. & Lebedinskii, A. I. Izvestija AN SSSR Ser. Fiz. (Russ.) 14, 765 (1950).

    Google Scholar 

  24. Cameron, A. G. W. & Pine, M. Icarus 18, 377 (1973).

    Article  ADS  Google Scholar 

  25. Cameron, A. G. W. Icarus 18, 407 (1973).

    Article  ADS  Google Scholar 

  26. Cameron, A. G. W. Icarus 24, 128 (1975).

    Article  ADS  Google Scholar 

  27. Goldreich, P. & Ward, W. Astrophys. J. 183, 1051 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GOLDANSKII, V. Interstellar grains as possible cold seeds of life. Nature 269, 583–584 (1977). https://doi.org/10.1038/269583a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/269583a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing