Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of receptor aggregation in complement-dependent inhibition of lymphocytes by high concentrations of concanavalin A

Abstract

EVIDENCE from haemolytic systems suggests that complement activation by either the classical or alternative pathways requires a close approximation of critical molecules at the cell surface. At least two molecules of IgG antibody in close proximity are required for the first component of complement to be bound1. Thus when increasing concentrations of IgG are added to erythrocytes in the presence of excess complement, haemolysis is minimal until a critical IgG concentration is reached. In the case of the alternative (properdin) pathway of complement activation, at least two molecules of C3b must be critically orientated together at the cell surface in order for properdin to bind and stabilise C3/C5 convertase2. Thus erythrocytes have a simple mechanism of signal discrimination by which they can ‘count’ the number of molecules reacting with their surfaces. The cells only ‘respond’ by lysis when a critical number has been reached. I present data which relate this mechanism of signal discrimination by erythrocytes to the mechanism by which cultured lymphocytes discriminate between low and high concentrations of the mitogenic lectin concanavalin A (con A). This in turn may be related to the mechanism by which lymphocytes discriminate between low and high concentrations of specific antigen to produce either an immune response or immunological tolerance3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rapp, H. J. & Borsos, T. in Molecular Basis of Complement Action, 71–74 (Appleton-Century-Crofts, New York, 1970).

    Google Scholar 

  2. Medicus, R. G., Schreiber, R. D., Gotze, O. & Muller-Eberhard, H. J. Proc. natn. Acad. Sci. U.S.A. 73, 612–616 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Forsdyke, D. R. J. theor. Biol. 25, 173–185 (1969).

    Article  CAS  Google Scholar 

  4. Milthorp, P. & Forsdyke, D. R. Nature 227, 1351–1352 (1970).

    Article  ADS  CAS  Google Scholar 

  5. Milthorp, P. & Forsdyke, D. R. Biochem. J. 132, 803–812 (1973).

    Article  CAS  Google Scholar 

  6. Gunther, G. R., Wang, J. L., Yahara, I., Cunningham, B. A. & Edelman, G. M. Proc. natn. Acad. Sci. U.S.A. 70, 1012–1016 (1973).

    Article  ADS  CAS  Google Scholar 

  7. Edelman, G. M. Science 192, 218–226 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Colten, H. R. Adv. Immun. 22, 67–118 (1976).

    Article  CAS  Google Scholar 

  9. Forsdyke, D. R. Biochem. J. 105, 679–684 (1967).

    Article  CAS  Google Scholar 

  10. Trowbridge, I. S. Proc. natn. Acad. Sci. U.S.A. 70, 3650–3654 (1973).

    Article  ADS  CAS  Google Scholar 

  11. Bornens, M., Karsenti, E. & Avrameas, S. Eur. J. Biochem. 65, 61–69 (1976).

    Article  CAS  Google Scholar 

  12. Fraser, A. R., Hemperly, J. J., Wang, J. L. & Edelman, G. M. Proc. natn. Acad. Sci. U.S.A. 73, 790–794 (1976).

    Article  ADS  CAS  Google Scholar 

  13. Beppu, M., Terao, T. & Osawa, T. J. Biochem. 79, 1113–1117 (1976).

    Article  CAS  Google Scholar 

  14. Yahara, I. & Edelman, G. M. Proc. natn. Acad. Sci. U.S.A. 72, 1579–1583 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Sallstrom, J. F. & Alm, G. V. Expl Cell Res. 75, 63–72 (1972).

    Article  CAS  Google Scholar 

  16. Storrie, B. J. Cell Biol. 62, 247–252 (1974).

    Article  CAS  Google Scholar 

  17. Morse, J. H. Immunology 14, 713–724 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Anderson, J., Sjoberg, O. & Moller, G. Immunology 23, 637–646 (1972).

    Google Scholar 

  19. Chauvenet, A. R. & Scott, D. W. J. Immun. 114, 470–475 (1975).

    CAS  PubMed  Google Scholar 

  20. Moller, G. Scand. J. Immun. 5, 583–586 (1976).

    Article  CAS  Google Scholar 

  21. Wedner, H. J. & Parker, C. W. Prog. Allergy 20, 195–300 (1976).

    CAS  PubMed  Google Scholar 

  22. McClain, D. A. & Edelman, G. M. J. exp. Med. 144, 1494–1508 (1976).

    Article  CAS  Google Scholar 

  23. Forsdyke, D. R. in The Biological Effects of Phytohaemagglutinin (ed. Elves, M. W.) 115–123 (R. Jones and A. Hunt Orthopaedic Hospital, Oswestry, 1966).

    Google Scholar 

  24. Forsdyke, D. R. Proc. Can. Fed. Biol. Socs 19, 62 (1976).

    Google Scholar 

  25. Fernandez, S. M. & Berlin, R. D. Nature 264, 411–415 (1976).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FORSDYKE, D. Role of receptor aggregation in complement-dependent inhibition of lymphocytes by high concentrations of concanavalin A. Nature 267, 358–360 (1977). https://doi.org/10.1038/267358a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/267358a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing