Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conformational change theory for auxin structure–activity relationships

Abstract

An hypothesis is advanced that the hormonal activity attributable to the heterogeneous group of plant growth compounds called auxins is a direct result of the ability of the bound auxin to undergo a simultaneous conformational change or reorientation with the receptor, while in the binding site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kögl, F., Haagen-Smit, A. J. & Erxleben, H. Hoppe-Seyler's Z. physiol. Chem. 228, 90–103; 104–112 (1934).

    Article  Google Scholar 

  2. Koepfli, J. B., Thimann, K. V. & Went, F. W. J. biol. Chem. 122, 763–780 (1938).

    CAS  Google Scholar 

  3. Veldstra, H. Enzymologia 11, 97–136; 137–163 (1944); A. Rev. Pl. Physiol. 4, 151–198 (1953).

    CAS  Google Scholar 

  4. Jönsson, A. in Encyclopaedia of Plant Physiology 14, 959–1006 (Springer, Berlin, 1961).

    Google Scholar 

  5. Fredga, A. & Åberg, B. A. Rev. Pl. Physiol. 16, 53–72 (1965).

    Article  CAS  Google Scholar 

  6. Audus, L. J. Plant Growth Substances 1: Chemistry and Physiology (Leonard Hill, London, 1972).

    Google Scholar 

  7. Tukey, H. B., Went, F. W., Muir, R. M. & van Overbeek, J. Pl. Physiol. 29, 307–308 (1954).

    Article  CAS  Google Scholar 

  8. Fawcett, C. H., Wain, R. L. & Wightman, F. Ann. appl. Biol. 43, 342–354 (1955).

    Article  CAS  Google Scholar 

  9. Osborne, D. J., Blackman, G. E., Novoa, S., Sudzuki, F. & Powell, R. G. J. exp. Bot. 6, 392–408 (1955).

    Article  CAS  Google Scholar 

  10. Toothill, J., Wain, R. L. & Wightman, F. Ann. appl. Biol. 44, 547–560 (1956).

    Article  CAS  Google Scholar 

  11. Leaper, J. M. F. & Bishop, J. R. Bot. Gaz. 112, 250–258 (1951).

    Article  CAS  Google Scholar 

  12. Kögl, F. & Kostermans, D. G. F. R. Hoppe-Seyler's Z. physiol. Chem. 235, 201–216 (1935).

    Article  Google Scholar 

  13. Hoffman, O. L., Fox, S. W. & Bullock, M. W. J. biol. Chem. 196, 437–441 (1952).

    Google Scholar 

  14. Muir, R. M. & Hansch, C. Pl. Physiol. 28, 218–232 (1953).

    Article  CAS  Google Scholar 

  15. Jönsson, Å Svensk kern. Tidskr. 67, 166–187 (1955).

    Google Scholar 

  16. Hansen, B. A. M., Burström, H. & Teär, J. Physiologia Pl. 8, 987–1002 (1955).

    Article  Google Scholar 

  17. Luckwill, L. C. & Woodcock, D. in The Chemistry and Mode of Action of Plant Growth Substances (eds. Wain, R. L. & Wightman, F.) 195–204 (Butterworths, London, 1956).

    Google Scholar 

  18. Åberg, B. Physiologia Pl. 4, 627–640 (1951).

    Article  Google Scholar 

  19. Burström, H. Physiologia Pl. 8, 174–188 (1955).

    Article  Google Scholar 

  20. Kaethner, T. M. thesis, Univ. Cambridge (1977).

  21. Veldstra, H. in The Chemistry and Mode of Action of Plant Growth Substances (eds Wain, R. L. & Wightman, F.) 117–133 (Butterworths, London, 1956).

    Google Scholar 

  22. Minarik, C. E., Ready, D., Norman, A. G., Thompson, H. E. & Owings, J. F. Jr Bot. Gaz. 113, 135–147 (1951).

    Article  CAS  Google Scholar 

  23. Åberg, B. in The Chemistry and Mode of Action of Plant Growth Substances (eds Wain, R. L. & Wightman, F.) 93–116 (Butterworths, London, 1956).

    Google Scholar 

  24. Wain, R. L. & Wightman, F. Ann. appl. Biol. 45, 140–157 (1957).

    Article  CAS  Google Scholar 

  25. Kefford, N. P. & Caso, O. H. Bot. Gaz. 127, 159–163 (1966).

    Article  CAS  Google Scholar 

  26. Haagen-Smit, A. J. & Went, F. W. Koninkl. Akad. Wetenschap. Amsterdam, Proc. Sect. Sci. 38, 852–857 (1935).

    Google Scholar 

  27. Thimann, K. V. Pl. Physiol. 27, 392–404 (1952).

    Article  CAS  Google Scholar 

  28. Matell, M. K. LantbrHögsk. Annlr. 20, 205–240 (1953); Arkiv. Kemi 6, 365–374, (1953).

    CAS  Google Scholar 

  29. Åberg, B. K. LantbrHögsk. Annlr. 20, 241–295 (1953).

    Google Scholar 

  30. Aberg, B. K. LantbrHögsk Annlr. 35, 3–27 (1969).

    CAS  Google Scholar 

  31. Kögl, F. Naturwissenschaften 25, 465–470 (1937).

    Article  ADS  Google Scholar 

  32. Kögl, F. & Veerkaaik, B. Hoppe-Seyler's Z. physiol. Chem. 280, 167–176 (1944).

    Article  Google Scholar 

  33. Åberg, B. K. LantbrHögsk. Annlr. 24, 375–395 (1958)

    Google Scholar 

  34. Åberg, B. K. LantbrHögsk. Annlr. 26, 229–238 (1960).

    Google Scholar 

  35. Burström, H. Physiologia Pl. 4, 470–485 (1951).

    Article  Google Scholar 

  36. Went, F. W. Archs Biochem. 20, 131–136 (1949).

    CAS  Google Scholar 

  37. Hansch, C., Muir, R. M. & Metzenberg, R. L., Jr, Pl. Physiol. 26, 812–821 (1951).

    Article  CAS  Google Scholar 

  38. Smith, M. S. & Wain, R. L. Proc. R. Soc. B. 139, 118–127 (1951).

    Article  ADS  CAS  Google Scholar 

  39. Thimann, K. V. A. Rev. Pl. Physiol. 14, 1–18 (1963).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaethner, T. Conformational change theory for auxin structure–activity relationships. Nature 267, 19–23 (1977). https://doi.org/10.1038/267019a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/267019a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing