Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Differentiation induced by cyclic AMP in undifferentiated cells of early chick embryo in vitro

Abstract

THE undifferentiated cells of the chick embryo in the post-nodal piece (PNP), obtained by a transverse cut at 0.5 mm posterior to Hensen's node of stage 4 blastoderm, remain incapable of differentiation when grown in a variety of media or by chorioallontoic grafting technique. When combined with the region anterior to the streak, including Hensen's node, however, the PNP would undergo normal differentiation similar to the embryonic axial structures1–3, suggesting that information might have been transferred from one tissue to another. Later studies by Butros2 and Niu and coworkers4,5 have shown that the PNP explants could be induced to develop into specific tissues, such as pulsating cardiac muscle tissues, when the explants were cultured in the presence of RNA isolated from the embryonic heart. The development was organ specific since RNA from kidney or thymus was incapable of inducing the heart formation5. To confirm this mode of differentiation in the PNP and to provide a meaningful biochemical interpretation to the phenomenon, we have begun studies examining the precise nature of the competent RNA and the sequence of events that leads to the formation of highly organised myofibrils. In a parallel study, we asked whether addition of exogenous cyclic AMP, which seems to be involved in control of morphological differentiation and biochemical changes in both normal and neoplastic cells (for review see ref. 6 and subsequent papers 7–15) would affect the development of the PNP in culture. Here we report that cyclic AMP, in the absence of exogenous RNA, can indeed produce specific morphological transformations, including the formation of heart-like pulsating tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rawles, M. E., Physiol. Zool., 16, 22–44 (1943).

    Article  Google Scholar 

  2. Butros, J., J. exp. Zool., 149, 1–20 (1962).

    Article  CAS  Google Scholar 

  3. Butros, J., J. Embryol. exp. Morph., 13, 119–128 (1965).

    CAS  PubMed  Google Scholar 

  4. Sanyal, S., and Niu, M. C., Proc. natn. Acad. Sci. U.S.A., 55, 743–750 (1966).

    Article  ADS  CAS  Google Scholar 

  5. Deshpande, A. K., Niu, L. C., and Niu, M. C., in The Role of RNA in Reproduction and Development (edit. by Niu, M. C., and Segal, S.), 229–246 (Elsevier, New York, 1973).

    Google Scholar 

  6. Pastan, I., and Johnson, G. S., in Advances in Cancer Research, 19 (edit. by Klein, G., Weinhouse, S.,and Haddow, A.), 303–329 (Academic Press, New York, 1974).

    Google Scholar 

  7. Roisen, F. J., Murray, R. A., Pichichero, M. E., and Braden, W. G., Science, 175, 73–74 (1972).

    Article  ADS  CAS  Google Scholar 

  8. Wahrmann, J. P., Winland, R., and Luzzati, D., Nature new Biol., 245, 112–113 (1973).

    Article  CAS  Google Scholar 

  9. Hovi, T., and Vaheri, A., Nature new Biol., 245, 175–176 (1973).

    Article  CAS  Google Scholar 

  10. Seifert, W. E., and Rudland, P. S., Nature, 248, 138–139 (1974).

    Article  ADS  CAS  Google Scholar 

  11. Rudland, P. S., Gospodarowicz, D., and Seifert, W., Nature, 250, 741–742 (1974).

    Article  ADS  CAS  Google Scholar 

  12. Weinstein, Y., Chambers, D. A., Bourne, H. R., and Melmon, K. L., Nature, 251, 352–35 (1974).

    Article  ADS  CAS  Google Scholar 

  13. Bjerre, B., Experientia, 30, 534–535 (1974).

    Article  CAS  Google Scholar 

  14. Filosa, S., Pictet, R., and Rutter, W. J., Nature, 257, 702–704 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Bosing-Schneider, R., Nature, 256, 137–138 (1975).

    Article  ADS  CAS  Google Scholar 

  16. Hamburger, V., and Hamilton, H. L., J. Morph., 88, 49–92 (1951).

    Article  CAS  Google Scholar 

  17. Rudnick, D., Anat. Rec., 70, 351–368 (1938).

    Article  Google Scholar 

  18. Mulherkar, L., J. Embryol. exp. Morph., 6, 1–14 (1958).

    CAS  PubMed  Google Scholar 

  19. Niu, M. C., and Deshpande, A. K., J. Embryol. exp. Morph., 29, 485–501 (1973).

    CAS  PubMed  Google Scholar 

  20. Manasek, F. J., J. Morph., 125, 329–366 (1968).

    Article  CAS  Google Scholar 

  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., J. biol. Chem., 193, 265–275.

  22. Butcher, R. W., and Sutherland, E. W., J. biol. Chem., 237, 1244–1250 (1962).

    CAS  Google Scholar 

  23. Schultz, J., and Daly, J. W., J. biol. Chem., 248, 853–859 (1973).

    CAS  Google Scholar 

  24. Blume, A. J., Dalton, C., and Sheppard, H., Proc. natn. Acad. Sci. U.S.A., 70, 3099–3102 (1973).

    Article  ADS  CAS  Google Scholar 

  25. Clark, R. B., Gross, R., Ying-fu, Su, and Perkins, J. P., J. biol. Chem., 249, 5296–5303 (1974).

    CAS  PubMed  Google Scholar 

  26. Blume, A. J., and Foster, C. J., J. biol. Chem., 250, 5003–5008 (1975).

    CAS  PubMed  Google Scholar 

  27. Sattin, A., and Rall, T. W., Molec. Pharmac., 6, 13–23 (1970).

    CAS  Google Scholar 

  28. Lee, H., Kalmus, G. W., and Nagele, R. G., Jr., In Vitro, 21, 286 (abstract) (1976).

    Google Scholar 

  29. Reporter, M., and Rosenquist, G. C., Science, 178, 628–630 (1974).

    Article  ADS  Google Scholar 

  30. Deshpande, A. K., and Siddiqui, M. A. Q., Devl Biol. (in the press).

  31. New, D. A. T., J. Embryol. exp. Morph., 3, 326–331 (1955).

    Google Scholar 

  32. Chauhan, S. P. S., and Rao, K. V., J. Embryol. exp. Morph., 23, 71–78 (1970).

    CAS  PubMed  Google Scholar 

  33. Pannett, C. A., and Compton, A., Lancet, 206, 381–384 (1924).

    Article  Google Scholar 

  34. O'Brien, R. A., Boulbik, M., and Spector, S., J. Pharmac. exp. Ther., 194, 145–153 (1975).

    CAS  Google Scholar 

  35. Gilman, A. G., Proc. natn. Acad. Sci. U.S.A., 67, 305–312 (1970).

    Article  ADS  CAS  Google Scholar 

  36. Brown, B. L., Albano, J. D. M., Ekins, R. P., and Sgherzi, A. M., Biochem. J., 121, 561–562 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DESHPANDE, A., SIDDIQUI, M. Differentiation induced by cyclic AMP in undifferentiated cells of early chick embryo in vitro. Nature 263, 588–591 (1976). https://doi.org/10.1038/263588a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/263588a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing