Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spike after-hyperpolarisation of a sympathetic neurone is calcium sensitive and is potentiated by theophylline

Abstract

IN many neurones, calcium as well as sodium enters during the action potential1. Intracellular injection of calcium has been shown in several neurones to increase membrane conductance to potassium2,3, and voltage clamp experiments have demonstrated that inward calcium currents can activate outward potassium currents4–7. The action potential in many nerve cells is followed by a slower after-hyperpolarisation (AH), which results from increases of one or more potassium conductances8,9. Therefore, calcium influx during an action potential might activate part or all of the subsequent AH2,3,10. A calcium-dependent component of the AH has been demonstrated so far in myenteric plexus neurones11,12 and spinal motoneurones13. This component of the AH is blocked by Co2+, Mn2+ and La3+, which antagonise calcium influx12,13, but agents that potentiate such AHs have not been reported. We have used sucrose-gap recording14 to investigate the sympathetic ganglion of the bullfrog, and report here that the sympathetic neurones have a calcium-sensitive component of the spike AH. Furthermore, this calcium-sensitive potassium conductance is potentiated by theophylline, a drug known to affect cellular calcium metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reuter, H., Prog. Biophys. molec. Biol., 26, 1–43 (1973).

    Article  CAS  Google Scholar 

  2. Meech, R. W., Comp. Biochem. Physiol., 42A, 493–499 (1972); J. Physiol. Lond., 237, 259–277 (1974).

    Article  CAS  Google Scholar 

  3. Krnjevic, K., and Liesewicz, W., J. Physiol. Lond., 225, 363–390 (1972).

    Article  CAS  Google Scholar 

  4. Clusin, W., Spray, D. C., and Bennett, M. V. L., Nature, 256, 425–427 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Meech, R. W., and Standen, N. B., J. Physiol. Lond., 249, 211–239 (1975).

    Article  CAS  Google Scholar 

  6. Mounier, Y., and Vassort, G., J. Physiol. Lond., 251, 609–625 (1975).

    Article  CAS  Google Scholar 

  7. Vassort, G., J. Physiol. Lond., 252, 713–734 (1975).

    Article  CAS  Google Scholar 

  8. Katz, B., Nerve, Muscle, and Synapse (McGraw-Hill, New York, 1966).

    Google Scholar 

  9. Barrett, J. N., and Crill, W. E., Fedn Proc. 31, 305 (1972).

    Google Scholar 

  10. Jansen, J. K. S., and Nicholls, J. G., J. Physiol. Lond., 229, 635–655 (1973).

    Article  CAS  Google Scholar 

  11. Nishi, S., and North, R. A., J. Physiol. Lond., 231, 471–491 (1973).

    Article  CAS  Google Scholar 

  12. North, R. A., Br. J. Pharmac., 49, 709–711 (1973).

    Article  CAS  Google Scholar 

  13. Barrett, E. F., and Barrett, J. N., J. Physiol. Lond., 255, 737–774 (1976).

    Article  CAS  Google Scholar 

  14. Nishi, S., and Koketsu, K., J. Neurophysiol.,31, 717–728 (1968).

    Article  CAS  Google Scholar 

  15. McAfee, D. A., and Greengard, P., Science, 178, 310–312 (1972).

    Article  ADS  CAS  Google Scholar 

  16. Weight, F. F., and Padjen, A., Brain Res., 55, 219–224 (1973).

    Article  CAS  Google Scholar 

  17. Blackman, J. G., Ginsborg, B. L., and Ray, C., J. Physiol. Lond., 167, 374–388 (1963).

    Article  CAS  Google Scholar 

  18. Weight, F. F., and Votava, J., Science, 170, 755–758 (1970).

    Article  ADS  CAS  Google Scholar 

  19. Libet, B., Chichibu, S., and Tosaka, T., J. Neurophysiol., 31, 383–395 (1968).

    Article  CAS  Google Scholar 

  20. Koketsu, K., and Nishi, S., J. gen. Physiol., 53, 608–623 (1969).

    Article  CAS  Google Scholar 

  21. Scholz, H., and de Yazikof, E., Naunyn-Schmiedebergs Arch. Pharmak., 271, 374–395 (1971); Scholz, H., ibid, 271, 396–409 (1971); ibid, 271, 410–429 (1971).

    Article  CAS  Google Scholar 

  22. Tsien, R. W., Giles, W., and Greengard, P., Nature new Biol., 240, 181–183 (1972).

    Article  CAS  Google Scholar 

  23. Robison, G. A., Butcher, R. W., and Sutherland, E. W., Cyclic AMP (Academic, New York, 1971).

    Google Scholar 

  24. Rasmussen, H., Science, 170, 404–412 (1970).

    Article  ADS  CAS  Google Scholar 

  25. Berridge, M. J., in Advances in Cyclic Nucleotide Research, 6 (edit. by Greengard, P., and Robinson, G. A.), 1–98 (Raven, New York, 1975).

    Google Scholar 

  26. Meech, R. W., Comp. Biochem. Physiol., 48A, 387–395 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BUSIS, N., WEIGHT, F. Spike after-hyperpolarisation of a sympathetic neurone is calcium sensitive and is potentiated by theophylline. Nature 263, 434–436 (1976). https://doi.org/10.1038/263434a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/263434a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing