Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Possible pathway for prebiotic uracil synthesis by photodehydrogenation

Abstract

THE synthesis of purines in potentially prebiotic conditions has been demonstrated1,2. Adenine and guanine have been synthesised directly from aqueous cyanide solutions and a mechanism for the concentration of hydrogen cyanide in low melting eutectics has been proposed3. These purines are also obtained from solutions of cyanogen (unpublished). The pyrimidines, however, have provided a more difficult problem. Uracil has been obtained from malic acid and urea, but only by heating in the presence of concentrated sulphuric acid4 or polyphosphoric acid5. Low yields of uracil have been inferred from spectral data for a reaction involving acrylonitrile, urea and ammonium chloride6. Further details concerning the conditions of this reaction, however, have not been offered. Cytosine and, indirectly uracil, have been prepared from cyanoacetylene and cyanate7,8. The rapid hydrolysis of these reactants raises doubts about this route. Cyanoacetaldehyde, a hydrolysis product of cyanoacetylene, condenses with guanidine in aqueous solution to yield 2,4-diaminopyrimidine, which is hydrolysed to cytosine and uracil. The later route is considered to be more plausible9. Thymine has been prepared in 0.1% yield from uracil by a hydroxymethylation-reduction sequence involving formaldehyde and hydrazine hydrate in ammoniacal solution10. In view of uncertainties concerning the abundances on the primitive Earth of a number of the precursors which have been used in these studies, it seemed desirable to consider alternative routes to the synthesis of pyrimidines. In this report we describe the synthesis of uracil by the photodehydrogenation of 5,6-dihydrouracil (DHU), as well as the synthesis of DHU from β-alanine and urea in mild conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Oró, J., and Kimball, A. P., Archs Biochem. Biophys., 94, 217–227 (1961).

    Article  Google Scholar 

  2. Sanchez, R. A., Ferris, J. P., and Orgel, L. E., J. molec. Biol., 30, 223–253 (1967) (and refs therein).

    CAS  PubMed  Google Scholar 

  3. Sanchez, R. A., Ferris, J. P., and Orgel, L. E., Science, 153, 72–73 (1966).

    Article  ADS  CAS  Google Scholar 

  4. Davidson, D., and Baudisch, O., J. Am. chem. Soc., 48, 2379–2383 (1926).

    Article  CAS  Google Scholar 

  5. Fox, S. W., and Harada, K., Science, 133, 1923–1924 (1961).

    Article  ADS  CAS  Google Scholar 

  6. Oró, J., Fedn Proc., 22, 681 (1963).

    Google Scholar 

  7. Sanchez, R. A., Ferris, J. P., and Orgel, L. E., Science, 154, 784–785 (1966).

    Article  ADS  CAS  Google Scholar 

  8. Ferris, J. P., Sanchez, R. A., and Orgel, L. E., J. molec. Biol., 33, 693–704 (1968).

    Article  CAS  Google Scholar 

  9. Ferris, J P., Zamek, O. S., Altbuch, A. M., and Freiman, H., J. molec. Evol., 3, 301–309 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Stephen-Sherwood, E., Oró, J., and Kimball, A. P., Science, 173, 446–447 (1971).

    Article  ADS  CAS  Google Scholar 

  11. Br. Pat. 913, 713 (1962); Chem. Abs., 58, 12428h (1963); Swiss Pat. 380, 716 (1965); Chem. Abs., 62, 16069f (1965).

  12. Lengfeld, F., and Stieglitz, J. J., Am. chem. J., 15, 504–518 (1893).

    Google Scholar 

  13. Fink, R. M., McGaughey, C., Cline, B. E., and Fink, K., J. biol. Chem., 218, 1–7 (1956).

    CAS  PubMed  Google Scholar 

  14. Posner, T., and Rohde, K., Ber., 42, 2785–2794 (1909).

    Article  CAS  Google Scholar 

  15. Spector, L. B., and Keller, E. B., J. biol. Chem., 232, 185–192 (1958).

    CAS  PubMed  Google Scholar 

  16. Wheeler, H. L., and Johnson, T. B., J. biol. Chem., 3, 183–189 (1907).

    CAS  Google Scholar 

  17. van der Velden, W., and Schwartz, A. W., Science, 185, 691–693 (1974).

    Article  ADS  CAS  Google Scholar 

  18. van der Velden, W., Chittenden, G. J. F., and Schwartz, A. W., Advances in Organic Geochemistry, 1973 (edit. by Tissot, B., and Bienner, F.), 293–304 (Editions Technip, Paris, 1974).

    Google Scholar 

  19. Grimm, R. E., Clay Mineralogy, 49 (McGraw-Hill, New York, 1968).

    Google Scholar 

  20. Vincendon, G., Cier, A., and Nofre, C., Bull. Soc. chim. France, 32, 1997–2000 (1965).

    Google Scholar 

  21. Snipes, W., and Bernhard, W., Radiat. Res., 33, 162–173 (1968).

    Article  ADS  CAS  Google Scholar 

  22. Lohrmann, R., and Orgel, L. E., Science, 171, 490–494 (1971) (and refs therein).

    Article  ADS  CAS  Google Scholar 

  23. Ferris, J. P., and Nicodem, D. E., in The Origin of Life and Evolutionary Biochemistry (edit. by Dose, K., Fox, S. W., Deborin, G. A., and Pavlovskaya, T. E.), 107 (Plenum, New York, 1974).

    Book  Google Scholar 

  24. Kvenvolden, K. A., Lawless, J. G., and Ponnamperuma, C., Proc. natn. Acad. Sci. U.S.A., 68, 486–490 (1971).

    Article  ADS  CAS  Google Scholar 

  25. Miller, S. L., Biochim. biophys. Acta., 23, 480–487 (1957); Oró, J., Kimball, A., Fritz, R., and Master, F., Archs Biochem. Biophvs., 85 115–130 (1959).

    Article  CAS  Google Scholar 

  26. Wolman, Y., Haverland, W. J., and Miller, S. L., Proc. natn. Acad. Sci. U.S.A., 69, 809–811 (1972).

    Article  ADS  CAS  Google Scholar 

  27. Park, W. K., Hochstim, A. R., and Ponnamperuma, C., Origins of Life, 6, 99–107 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CHITTENDEN, G., SCHWARTZ, A. Possible pathway for prebiotic uracil synthesis by photodehydrogenation. Nature 263, 350–351 (1976). https://doi.org/10.1038/263350a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/263350a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing