Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two proteins function in the regulation of photosynthetic CO2 assimilation in chloroplasts

Abstract

THERE is increasing evidence that products of the light reactions of photosynthesis govern the activity of enzymes involved in CO2 assimilation by chloroplasts1–15. Of these products, reductants formed photochemically seem to be of particular importance. Such reductants include the reduced form of ferredoxin2,6,10, a strongly electronegative chloroplast iron-sulphur protein (E0=−0.42 V) that activates the two key chloroplast enzymes fructose 1,6-bis-phosphatase and sedoheptulose l,7-bis-phosphatase. Activation of both of these enzymes requires in addition to reduced ferredoxin a ‘protein factor’ that is indigenous to chloroplasts. In efforts to elucidate the nature of the ferredoxin-linked enzyme activation, we have separated the protein factor into two components16: (1) a partly purified protein, provisionally named “assimilation regulatory protein a” (ARPa) and (2) a highly purified chromophore-free protein called “assimilation regulatory protein b” (ARPb). Only the latter was required for activation when reduced ferredoxin was replaced by the non-physiological sulphydryl reagent dithiothreitol6,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Petersen, T. A., Kirk, M., and Bassham, J. A., Physiologia Pl., 19, 219–231 (1966).

    Article  Google Scholar 

  2. Buchanan, B. B., Kalberer, P. P., and Arnon, D. I., Biochem. biophys. Res. Commun., 29, 74–79 (1967).

    Article  CAS  PubMed  Google Scholar 

  3. Bassham, J. A., Kirk, M., and Jensen, R. G., Biochim. biophys, Acta, 153, 211–218 (1968).

    Article  CAS  Google Scholar 

  4. Müller, B., Ziegler, I., and Ziegler, H., Eur. J. Biochem., 9, 101–106 (1969).

    Article  PubMed  Google Scholar 

  5. Latzko, E., Garnier, R. V., and Gibbs, M., Biochem. biophys. Res. Commun., 39, 1140–1144 (1970).

    Article  CAS  PubMed  Google Scholar 

  6. Buchanan, B. B., Schürmann, P., and Kalberer, P. P., J. biol. Chem., 246, 5952–5959 (1971).

    CAS  PubMed  Google Scholar 

  7. Buchanan, B. B., and Schürmann, P., J. biol. Chem., 248, 4956–4964 (1973).

    CAS  PubMed  Google Scholar 

  8. Pupillo, P., and Piccari, G. G., Archs. Biochem. Biophys., 154, 324–331 (1973).

    Article  CAS  Google Scholar 

  9. Chu, D. K., and Bassham, J. A., Pl. Physiol., 54, 556–559 (1974).

    Article  CAS  Google Scholar 

  10. Schürmann, P., and Buchanan, B. B., Biochim. biophys. Acta, 376, 189–192 (1975).

    Article  PubMed  Google Scholar 

  11. Champigny, M. L., and Bismuth, E., Physiologia Pl., 36, 95–100 (1976).

    Article  CAS  Google Scholar 

  12. Ryan, F. J., and Tolbert, N. E., J. biol. Chem., 250, 4234–4238 (1975).

    CAS  PubMed  Google Scholar 

  13. Anderson, L. E., and Avron, M., Pl. Physiol., 57, 209–213 (1976).

    Article  CAS  Google Scholar 

  14. Wolosiuk, R. A., and Buchanan, B. B., J. biol. Chem. (in the press).

  15. Marsho, T. V., and Kung, S. D., Archs. Biochem. Biophys., 173, 341–346 (1976).

    Article  CAS  Google Scholar 

  16. Wolosiuk, R. A., Schürmann, P., Breazeale, V. D., and Buchanan, B. B., Fedn Proc., 35, 1732 (1976).

    Google Scholar 

  17. Buchanan, B. B., Schürmann, P., and Wolosiuk, R. A., Biochem. biophys. Res. Commun., 69, 970–978 (1976).

    Article  CAS  PubMed  Google Scholar 

  18. Pupillo, P., and Giuliani Piccari, G., Eur. J. Biochem., 51, 475–482 (1975).

    Article  CAS  PubMed  Google Scholar 

  19. Heldt, H. W., Werdan, K., Milovancev, M., and Geller, G., Biochim. biophys. Acta, 314, 224–241 (1973).

    Article  CAS  PubMed  Google Scholar 

  20. Werdan, K., Heldt, K. W., and Milovancev, M., Biochim. biophys. Acta, 396, 276–292 (1975).

    Article  CAS  PubMed  Google Scholar 

  21. Lin, D. C., and Nobel, P. S., Archs. Biochem. Biophys., 145, 622–632 (1971).

    Article  CAS  Google Scholar 

  22. Lilley, R. McC., Holborow, K., and Walker, D. A., New Phytol., 73, 657–662 (1974).

    Article  CAS  Google Scholar 

  23. Barber, J., Trends biochem. Sci., 1, 33–36 (1976).

    Article  CAS  Google Scholar 

  24. Moll, B., and Levine, R. R., Pl. Physiol., 46, 576–580 (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SCHÜRMANN, P., WOLOSIUK, R., BREAZEALE, V. et al. Two proteins function in the regulation of photosynthetic CO2 assimilation in chloroplasts. Nature 263, 257–258 (1976). https://doi.org/10.1038/263257a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/263257a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing