Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synaptic vesicle recycling in synaptosomes in vitro

Abstract

PINCHED-OFF presynaptic nerve terminals (synaptosomes) prepared from rat brain homogenates1,2 retain many of the functional properties of intact neurones3,4. They can accumulate K+ and extrude Na+ against concentration gradients5,6, and their membranes seem to develop K+ diffusion potentials which behave like the membrane potentials of most neurones7. Furthermore, the isolated terminals exhibit an increased rate of Ca2+ accumulation8 and Ca2+-dependent transmitter release8–10 when exposed to depolarising agents such as veratridine or an increased external K+ concentration ([K]0). The latter findings are consistent with the ‘calcium hypothesis’ of depolarisation–secretion coupling11. The calcium which enters the terminals during depolarisation seems to trigger the release of transmitter from intraterminal vesicles by an exocytotic process involving transient fusion of the vesicle membrane with the surface membrane12–14. This hypothesis is supported by experiments with electron-opaque extracellular markers; the appearance of the markers within intraterminal vesicles, after stimulation, has been taken as evidence for vesicle recycling15–17. Here we report similar observations on synaptosomes incubated in vitro, showing that synaptosomes function like intact terminals in this respect as well.

This is a preview of subscription content, access via your institution

Access options

Similar content being viewed by others

References

  1. DeRobertis, E., Pellegrino deIraldi, A., Rodriguez deLores Arnaiz, G., and Salganicoff, L., J. Neurochem., 9, 23–35 (1962).

    Article  CAS  Google Scholar 

  2. Gray, E. G., and Whittaker, V. P., J. Anat., 96, 79–88 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rodriguez deLores Arnaiz, G., and DeRobertis, E., Curr. Top. Membr. Trans., 3, 237–272 (1972).

    Article  Google Scholar 

  4. Bradford, H. F., Handbook of Psychopharmacology, 1 (edit. by Iverson, L. L. Iverson, S. D., and Synder, S. H.), 191–252 (Plenum, New York, 1975).

    Google Scholar 

  5. Escueta, A. V., and Appel, S. H., Biochemistry, 8, 725–733 (1969).

    Article  CAS  PubMed  Google Scholar 

  6. Ling, C.-M., and Abdel-Latiff, A. A., J. Neurochem., 15, 721–730 (1968).

    Article  CAS  PubMed  Google Scholar 

  7. Blaustein, M. P., and Goldring, J. M., J. Physiol., Lond., 247, 589–615 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blaustein, M. P., J. Physiol., Lond., 247, 617–655 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blaustein, M. P., Johnson, E. M., Jr., and Needleman, P., Proc. natn. Acad. Sci. U.S.A., 69, 2237–2240 (1972).

    Article  ADS  CAS  Google Scholar 

  10. De Belleroche, J. S., and Bradford, H. F., J. Neurochem., 19, 1817–1819 (1972).

    Article  CAS  PubMed  Google Scholar 

  11. Katz, B., and Miledi, R., J. Physiol., Lond., 203, 459–487 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Douglas, W. W., Nagasawa, J., and Schultz, R. A., Nature, 227, 407–409 (1970).

    Article  ADS  PubMed  Google Scholar 

  13. Pfenninger, K. H., and Rovainen, C. M., Brain Res., 72, 1–23 (1974).

    Article  CAS  PubMed  Google Scholar 

  14. Heuser, J. E., Reese, T. S., and Landis, D. M. D., J. Neurocytol., 3, 109–131 (1974).

    Article  CAS  PubMed  Google Scholar 

  15. Ceccarelli, B., Hurlbut, W. P., and Mauro, A., J. Cell Biol., 57, 499–524 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heuser, T. E., and Reese, T. S., J. Cell Biol., 57, 315–344 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Turner, P. T., and Harris, A. B., Nature, 242. 57–59 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Blaustein, M. P., and Ector, A. C., Biochim. biophys. Acta, 419, 295–308 (1976).

    Article  CAS  PubMed  Google Scholar 

  19. Graham, R., and Karnovsky, M., J. Histochem. Cytochem., 14, 291–302 (1965).

    Article  Google Scholar 

  20. Karnovsky, M. J., Am. Soc. Cell Biol., 11th Mtg, Abstr., 146 (1971).

  21. Gray, E. G., and Willis, R. A., Brain Res., 24, 149–168 (1970).

    Article  CAS  PubMed  Google Scholar 

  22. McMahan, U. J., and Yee, A., Neurosci. Abstr., Soc. Neurosci., Fifth Ann. Mtg., 624 (1975).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FRIED, R., BLAUSTEIN, M. Synaptic vesicle recycling in synaptosomes in vitro. Nature 261, 255–256 (1976). https://doi.org/10.1038/261255a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/261255a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing