Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effect of ribothymidine in specific eukaryotic tRNAs on their efficiency in in vitro protein synthesis

Abstract

RIBOTHYMIDINE (m5U or rT), the most common methylated nucleoside found in tRNA, is always at the 23rd position from the 3′ end in the nucleotide sequence GTψCPurine1,2. So far ribothymidine has been found in essentially all pro-karyotic tRNAs which function in protein synthesis, but not in several eukaryotic ‘elongator’ tRNAs3–6. In the case of wheat germ, all the glycine tRNAs, several species of threonine tRNA and one species of tyrosine tRNA have an unmodified uridine in the position usually occupied by ribothymidine (ref. 5 and K.B.M., D. Marcu, and B.S.D., manuscript in preparation). To determine the significance of the absence of rT in these tRNAs, we have methylated them enzymatically with a crude preparation of E. coli rT-forming uracil methyltransferase and then compared their efficiency with that of the unmodified tRNAs in a wheat germ cell-free protein synthesising system directed by various natural mRNAs. We report here that these tRNAs function significantly more efficiently in protein synthesis when lacking rT and that the inhibitory effect of rT can be reversed by the polyamine spermine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kim, S. H., et al., Proc. natn. Acad. Sci. U.S.A., 71, 4970–4974 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Nishimura, S., in Biochemistry of Nucleic Acids (edit. by Burton, K.), 289–322 (Butterworths, London, 1974).

    Google Scholar 

  3. Kimura-Haroda, F., Saneyoshi, M., and Nishimura, S. FEBS Lett., 13, 335–338 (1971).

    Article  Google Scholar 

  4. Faras, A. J., et al., J. Virol., 13(5), 1134–1142 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Marcu, K., et al., Biochem. biophys. Res. Commun., 55, 477–483 (1973).

    Article  CAS  PubMed  Google Scholar 

  6. Piper, R. W., and Clark, B. F. C., FEBS Lett., 47, 56–59 (1974).

    Article  CAS  PubMed  Google Scholar 

  7. Ghosh, K., Ghosh, H. P., Simsek, M., and RajBhandary, U. L., J. Biol. Chem., 249, 4720–4729 (1974).

    CAS  PubMed  Google Scholar 

  8. Simsek, M., RajBhandary, U. L., Boisnard, M., and Petrissant, G., Nature, 247, 518–520 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Simsek, M., Petrissant, G., and RajBhandary, U. L., Proc. natn. Acad. Sci U.S.A., 70, 2600–2604 (1973).

    Article  ADS  CAS  Google Scholar 

  10. Piper, P. W., and Clark, B. F. C., FEBS Lett., 30, 265–267 (1973).

    Article  CAS  PubMed  Google Scholar 

  11. Simsek, M., and RajBhandary, U. L., Biochem. biophys. Res. Commun., 49, 508–515 (1972).

    Article  CAS  PubMed  Google Scholar 

  12. Roberts, R. J., Nature new Biol., 237, 44–45 (1972).

    Article  CAS  PubMed  Google Scholar 

  13. Delk, A. S., and Rabinowitz, J. C., Nature, 252, 106–109 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Ofengand, J., and Henes, C., J. biol. Chem., 244, 6241–6253 (1969).

    CAS  PubMed  Google Scholar 

  15. Schwarz, U., Luhmann, R., and Gassen, H. B., Biochem. biophys. Res. Commun., 56, 807–814 (1974).

    Article  CAS  PubMed  Google Scholar 

  16. Erdmann, V. A., Sprinzl, M., and Pongs, O., Biochem. biophys. Res. Commun., 54, 942–948 (1973).

    Article  CAS  PubMed  Google Scholar 

  17. Littlefield, J. W., and Dunn, D. B., Biochem. J., 70, 642–651 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marcu, K., and Dudock, B., Nucleic Acid Res., 1, 1385–1397 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roberts, B. E., Mathews, M. B., and Burton, C. J., J. molec. Biol., 80, 733–742 (1973).

    Article  CAS  PubMed  Google Scholar 

  20. Efron, D., and Marcus, A., Virology, 53, 343–348 (1973).

    Article  CAS  PubMed  Google Scholar 

  21. Shih, D., and Kaesberg, P., Proc. natn. Acad. Sci. U.S.A., 70, 1799–1803 (1973).

    Article  ADS  CAS  Google Scholar 

  22. Paul, M., Goldsmith, M. R., Hunsley, J. R., and Kafatos, F. C., J. Cell Biol., 55, 653–680 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marcus, A., in Protein Biosynthesis in Nonbacterial Systems (edit. by Last, J. A. and Laskin, A. L.), 127–145 (Dekker, New York, 1972).

    Google Scholar 

  24. Allende, J. E., in Techniques in Protein Biosynthesis, 2 (edit. by Campbell, P. N., and Sargent, J. R.), 55–100 (Academic, New York, 1969).

    Google Scholar 

  25. Allen, E. H., and Schweet, R. S., J. biol. Chem., 237, 760–767 (1962).

    CAS  PubMed  Google Scholar 

  26. Kemper, B., Habener, J. F., Mulligan, R. C., Potts, J. T., Jr, and Rich, A., Proc. natn. Acad. Sci. U.S.A., 71, 3731–3735 (1974).

    Article  ADS  CAS  Google Scholar 

  27. Konecki, D., Gisela, K., Pinphanichakarn, P., and Hardesty, B., Archs Biochem. Biophys., 169, 192–198 (1975).

    Article  CAS  Google Scholar 

  28. Atkins, J. F., Lewis, J. B., Anderson, C. W., and Gesteland, R. F., J. biol. Chem, 250, 5688–5695 (1975).

    CAS  PubMed  Google Scholar 

  29. Johnson, H. G., and Bach, M. K., Archs Biochem. Biophys., 128, 113–123 (1968).

    Article  CAS  Google Scholar 

  30. Cohen, S. S., Ann. N. Y. Acad. Sci., 171, 869–881 (1970).

    Article  ADS  CAS  Google Scholar 

  31. Cohen, S. S., Introduction to the Polyarnines (Prentice Hall, Englewood Cliffs, New Jersey, 1971).

    Google Scholar 

  32. Cohen, S. S., Morgan, S., and Streibel, E., Proc. natn. Acad. Sci. U.S.A. 64, 669–676 (1969).

    Article  ADS  CAS  Google Scholar 

  33. Schrier, A., and Schimmel, P., J. molec. Biol., 93, 323–330 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MARCU, K., DUDOCK, B. Effect of ribothymidine in specific eukaryotic tRNAs on their efficiency in in vitro protein synthesis. Nature 261, 159–162 (1976). https://doi.org/10.1038/261159a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/261159a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing