Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enthalpy–entropy compensation of oxamate binding by homologous lactate dehydrogenases

Abstract

STUDIES1,2 of the amino acid sequence and crystal structure of M4 lactate dehydrogenase (EC 1.1.1.27) indicate that all binding interactions are of the weak, non-covalent type (proceeding with only minor free energy changes). Because critical regions of the substrate and coenzyme-binding site seem highly conserved3, and because non-covalent interactions are highly, if differentially, sensitive to the physical environment4, we wondered how organisms living in widely different temperatures and pressures stabilise enzyme–ligand interactions. We have therefore compared pyruvate binding site functions of lactate dehydrogenases obtained from organisms living in different temperatures and pressures. We used a placental mammal, the ox, with a cell temperature of 37 °C; a marsupial, the possum (Trichosurus vulpecula), with an average cell temperature of 36 °C (ref. 5), two monotremes, the platypus (Ornithorhynchus anatinus), with a cell temperature of about 31 °C (ref. 6), and the echidna (Tachyglossus aculeatus), with a body temperature of 23–32 °C (ref. 7); the goanna (Varanus gouldi), an Australian lizard with a cell temperature ranging from about 20 up to nearly 40 °C (ref. 8); the Pacific coast dogfish (Squalus acanthias), with an average body temperature of about 15 °C; an intertidal sculpin (Oligocottus maculosus), living in varying temperatures between about 5 and 15 °C, and an abyssal teleost fish, Antimora rostrata, with a highly constant body temperature of 2–3 °C. All these, except the dogfish and Antimora, can be viewed as species adapted to 1 atm; by contrast the abyssal species must be able to tolerate pressures of up to several hundred atmospheres, while the dogfish may encounter pressures from 1 to about 100 atm (N. J. Wilimovsky, personal communication). We found that adjustments in enthalpic and entropic contributions to lactate dehydrogenase binding allowed each homologue to bind ligand with similar avidity at its respective “normal” temperature and pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Holbrook, J. J., Liljas, A., Steindel, S. J., and Rossmann, M. G., The Enzymes 11 (edit. by Boyer, P. D.), 191–268 (Academic, New York, 1976).

    Google Scholar 

  2. Everse, J., and Kaplan, N. O., Adv. Enzymol., 37, 61–133 (1973).

    CAS  PubMed  Google Scholar 

  3. Taylor, S. S., and Oxley, S. S., Fedn Proc., 34, 2335 (1975).

    Google Scholar 

  4. Suzuki, K., and Taniguchi, Y., Soc. exp. Biol. Symp., 26, 103–124 (1972).

    CAS  Google Scholar 

  5. Dawson, T. G., and Hulbert, A. J., Am. J. Physiol., 218, 1233–1238 (1970).

    CAS  PubMed  Google Scholar 

  6. Smyth, D. M., Comp. Biochem. Physiol., 45 A, 705–715 (1973).

    Article  CAS  Google Scholar 

  7. Schmidt-Nielsen, K., Dawson, T. G., and Crawford, E. C., Jr, J. cell. comp. Physiol., 67, 63–72 (1966).

    Article  CAS  Google Scholar 

  8. Bartholomew, G. A., and Tucker, V. A., Physiol. Zool., 37, 341–345 (1964).

    Article  Google Scholar 

  9. Baldwin, J., Storey, K. B., and Hochachka, P. W., Comp. Biochem. Physiol., 52 F, 19–23 (1975).

    Article  CAS  Google Scholar 

  10. O'Carra, P., and Barry, S., FEBS Lett., 21, 281–285 (1972).

    Article  CAS  PubMed  Google Scholar 

  11. Mustafa, T., Moon, T. W., and Hochachka, P. W., Am. Zool., 11, 451–466 (1971).

    Article  Google Scholar 

  12. Hochachka, P. W., and Somero, G. N., Strategies of Biochemical Adaptation, 233 (Saunders, Philadelphia, 1973).

    Google Scholar 

  13. Atkinson, D. E., Br. biochem. Soc. Symp. (in the press).

  14. Subramanian, S., Stickel, D. C., and Fisher, H. F., J. biol. Chem., 250, 5885–5889 (1975).

    CAS  PubMed  Google Scholar 

  15. Low, P. S., and Somero, G. N., Comp. Biochem. Physiol., 49 F 307–312 (1974).

    CAS  Google Scholar 

  16. Borgmann, U., Laidler, K. J., and Moon, T. W., Can. J. Biochem., 53, 1196–1206 (1976).

    Article  Google Scholar 

  17. Lumry, R., and Rajender, S., Biopolymers, 9, 1125–1227 (1970).

    Article  CAS  PubMed  Google Scholar 

  18. Cohen, S. G., Vaidy, V. M., and Schultz, R. M., Proc. natn. Acad. Sci. U.S.A., 66, 249–256 (1970).

    Article  ADS  CAS  Google Scholar 

  19. Hochachka, P. W., Comp. Biochem. Physiol., 52 B, 25–31 (1975).

    CAS  Google Scholar 

  20. Low, P. S., and Somero, G. N., Proc. natn. Acad. Sci. U.S.A., 72, 3305–3309 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HOCHACHKA, P., NORBERG, C., BALDWIN, J. et al. Enthalpy–entropy compensation of oxamate binding by homologous lactate dehydrogenases. Nature 260, 648–650 (1976). https://doi.org/10.1038/260648a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/260648a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing