Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanism of selective nonspecific cell-mediated cytotoxicity of virus-infected cells

Abstract

STUDIES of mechanisms of resistance to herpes simplex virus (HSV) in mice have demonstrated antibody-dependent cell-mediated cytotoxicity (AD-CMC) of HSV-infected cells exposed in suspension cultures to anti-HSV sera and normal mouse peritoneal cells (PC) or human peripheral blood leukocytes. In this system it was impossible to demonstrate T-cell-mediated cytotoxicity1–3. In an attempt to adjust the assay conditions to permit detection of such cytotoxicity by immune spleens or PC, the “monolayer” system of Gardner et al.4 was examined in syngeneic, allogeneic and xenogeneic combinations. Target cell monolayers were infected with HSV and exposed to immune or normal mouse PC. The latter produced unexpectedly high levels of nonspecific release of 51Cr by the monolayer HSV-infected cells. Because nonspecific or non-selective killing of human tumour cells5 by lymphocytes from normal patients has been a major problem in human tumour immunology, we have investigated the mechanism of this nonspecific cell-mediated cytotoxicity in the HSV system. Our results indicate that selective nonspecific killing is a consequence of the cross linking of effector and target cells through aggregated immunoglobulins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rager-Zisman, B., and Bloom, B. R., Nature, 251, 542–543 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Shore, S. L., Nahmias, A. J., Starr, S. E., Wood, P. A., and McFarlin, D. F., Nature, 251, 350–352 (1974).

    Article  ADS  CAS  Google Scholar 

  3. Ramshaw, I. A., Infect. Immun., 11, 767–769 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gardner, I., Bowern, N. A., and Blanden, R. V., Eur. J. Immun., 4, 63–67 (1974).

    Article  CAS  Google Scholar 

  5. Bean, M. A., et al., Cancer Res., 35, 2902–2913 (1975).

    CAS  PubMed  Google Scholar 

  6. Schubert, D., Humphreys, S., Baroni, C., and Cohn, M., Proc. natn. Acad. Sci. U.S.A., 64, 316–323 (1969).

    Article  ADS  CAS  Google Scholar 

  7. Julius, M. H., Simpson, E., and Herzenberg, L. A., Eur. J. Immun., 3, 645–649 (1973).

    Article  CAS  Google Scholar 

  8. Allison, A. C., Harington, J. S., and Birbeck, M., J. exp. Med., 124, 141–154 (1966).

    Article  CAS  Google Scholar 

  9. Westmoreland, D., and Watkins, J. F., J. gen. Virol., 24, 167–178 (1974).

    Article  CAS  Google Scholar 

  10. Westmoreland, D., Watkins, J. F., and Rapp, F., J. gen. Virol., 25, 167–170 (1974).

    Article  CAS  Google Scholar 

  11. Ishizaka, T., Ishizaka, K., Salmon, S., and Fundenberg, H., J. Immun., 99, 82–91 (1967).

    CAS  PubMed  Google Scholar 

  12. Paraskevas, F., Lee, S.-T., Orr, K. B., and Israels, L. G., J. Immun., 108, 1319–1327 (1972).

    CAS  Google Scholar 

  13. Takasugi, M., Mickey, M. R., and Terasaki, P. I., Cancer Res., 33, 2898–2902 (1973).

    CAS  PubMed  Google Scholar 

  14. Hersey, P., et al., J. Cancer, 16, 173–183 (1975).

    CAS  Google Scholar 

  15. Tønder, O., Morse, P. A., and Humphrey, L. J., J. Immun., 113, 1162–1169 (1974).

    PubMed  Google Scholar 

  16. Svedmyr, E., and Jondal, M., Proc. natn. Acad. Sci. U.S.A., 72, 1622–1626 (1975).

    Article  ADS  CAS  Google Scholar 

  17. Stott, E. J., Probert, M., and Thomas, L. H., Nature, 255, 710–712 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Kiessling, R., Klein, E., Pross, H., and Wigzell, H., Eur. J. Immun., 5, 117–121 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

RAGER-ZISMAN, B., GROSE, C. & BLOOM, B. Mechanism of selective nonspecific cell-mediated cytotoxicity of virus-infected cells. Nature 260, 369–370 (1976). https://doi.org/10.1038/260369a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/260369a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing