Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Aminoacylation and micleoside modification of in vitro synthesised transfer RNA

Abstract

TRANSCRIPTION of transfer RNA (tRNA) genes in vitro by purified RNA polymerase has the advantage of producing completely unmodified tRNA precursors which provide a substrate for the study of the processes and modifications leading to the formation of mature tRNA molecules. We have shown1 that the tRNA genes, tRNA1Tyr (su3+ and su3), tRNA2Gly su+A36, tRNA3Thr and tRNA2Tyr (carried by the respective ϕ80psu3+,− and λh80T phage DNA2,3), were transcribed in vitro by Escherichia coli RNA polymerase into polycistronic tRNA precursors. These precursors were cleaved on incubation with a supernatant fraction from E. coli, yielding mature size tRNA molecules1. The transcription in vitro of an active tRNA1Tyr su3+ by crude S-30 E. coli extracts or a combination of partially purified fractions has been described4–6. The formation of the primary transcription products of the tRNATyr gene was not, however, clearly demonstrated and it was concluded that an additional E. coli extract fraction would be required to enable purified RNA polymerase to function in tRNA synthesis5,6. We report here evidence indicating that the in vitro transcription of ϕ80psu3+,− or λh80T DNA by purified E. coli RNA polymerase alone produces tRNA precursor molecules which are not only processed to form mature-size tRNA1 but are also recognised by specific modifying enzymes. In addition the tRNA molecules (tRNA1Tyr, tRNA2Tyr, tRNA3Thr and tRNA2Gly) synthesised and processed in vitro, possess amino acid acceptance activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Daniel, V., Grimberg, J. I., and Zeevi, M., Nature, 257, 193–197 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Andoh, T., and Ozeki, H., Proc. natn. Acad. Sci. U.S.A., 59, 792–799 (1968).

    Article  ADS  CAS  Google Scholar 

  3. Squires, C., Konrad, B., Kirschbaum, J., and Carbon, J., Proc. natn. Acad. Sci. U.S.A., 70, 438–441 (1973).

    Article  ADS  CAS  Google Scholar 

  4. Zubay, G., Cheong, L. C., and Gefter, M., Proc. natn. Acad. Sci. U.S.A., 68, 2195–2197 (1971).

    Article  ADS  CAS  Google Scholar 

  5. Bikoff, E. K., and Gefter, M. L., J. biol. Chem., 250, 6240–6247 (1975).

    CAS  PubMed  Google Scholar 

  6. Bikoff, E. K., La Rue, B. F., and Gefter, M. L., J. biol. Chem., 250, 6248–6255 (1975).

    CAS  PubMed  Google Scholar 

  7. Barrell, B. G., Procedures in Nucleic Acid Research, 2 (edit. by Cantoni, G. L., and Davies, D. R.), 751–779 (Harper and Row, New York, 1971).

    Google Scholar 

  8. Singer, C. E., Smith, G. R., Cortese, R., and Ames, B. N., Nature new Biol., 238, 72–74 (1972).

    Article  ADS  CAS  Google Scholar 

  9. Clarke, L., and Carbon, J., J. biol. Chem., 249, 6874–6885 (1974).

    CAS  Google Scholar 

  10. Roberts, J. W., and Carbon, J., J. biol. Chem., 250, 5530–5541 (1975).

    CAS  PubMed  Google Scholar 

  11. Beckmann, J. S., and Daniel, V., Biochemistry, 13, 4058–4062 (1974).

    Article  CAS  Google Scholar 

  12. Grimberg, J. I., and Daniel, V., Nature, 250, 320–323 (1974).

    Article  ADS  CAS  Google Scholar 

  13. Daniel, V., Beckmann, J. S., Grimberg, J. I., and Zeevi, M., Ninth Alfred Benzon Symp. Control Ribosome Synthesis (Munksgaard, Copenhagen in the press).

  14. Roberts, J. W., Nature, 244, 1168–1174 (1969).

    Article  ADS  Google Scholar 

  15. Carbon, J., Squires, C., and Hill, C. W., Cold Spring Harb. Symp. quant. Biol., 34, 505–512 (1969).

    Article  CAS  Google Scholar 

  16. Goodman, H. M., Abelson, J., Landy, A., Brenner, S., and Smith, J. D., Nature, 217, 1019–1024 (1968).

    Article  ADS  CAS  Google Scholar 

  17. Kasai, K., et al., Biochemistry, 14, 4198–4208 (1975).

    Article  CAS  Google Scholar 

  18. Holloway, P. W., and Popjak, G., Biochem. J., 106, 835–840 (1968).

    Article  CAS  Google Scholar 

  19. Nishimura, S., Prog. Nucleic Acid Res. molec. Biol., XII, 49–85 (1972).

    Article  Google Scholar 

  20. Chamberlin, M., and Berg, P., Proc. natn. Acad. Sci. U.S.A., 48, 81–94 (1962).

    Article  ADS  CAS  Google Scholar 

  21. Burgess, R. R., J. biol. Chem., 244, 6160–6167 (1969).

    CAS  Google Scholar 

  22. Calender, R., and Berg, P., Procedures in Nucleic Acid Research, 1 (edit. by Cantoni, G. L., and Davies, D. R.), 384–399 (Harper and Row, New York 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ZEEVI, M., DANIEL, V. Aminoacylation and micleoside modification of in vitro synthesised transfer RNA. Nature 260, 72–74 (1976). https://doi.org/10.1038/260072a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/260072a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing