Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Increasing haemoglobin β-chain synthesis in foetal development is associated with a declining γ- to α-mRNA ratio

Abstract

DURING human foetal development, the predominant haemoglobin in erythrocytes switches twice (Fig. 1). First, ɛ chains of embryonic haemoglobins in erythroblasts of yolk sac origin are replaced by γ chains of foetal haemoglobin and traces of β chains of adult haemoglobin. This switch occurs very early in foetal development, coincident with the appearance of a new type of peripheral erythrocyte of hepatic origin. Second, at about 32 weeks of gestation, predominantly γ-chain production gives way to increased β-chain synthesis within a constant cell type1. This double haemoglobin switch also occurs in other animals, including sheep2. Not only is very little known about the biological basis for the switch from γ- to β-chain production, but the basic changes in gene activity involved in the switching process are obscure. An understanding of the γ to β switch has clinical importance, for if one could block the switch and increase γ-chain production, sickle cell anaemia and β-thalassaemia could be treated effectively. We present here data concerning changes in globin gene activity, as assessed by globin mRNA levels, which are temporally related to the turning up of β-chain synthesis. These observations were originally made in erythroid cells of aborted human foetuses and were extended to cells from foetal sheep.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kazazian, H. H., Jr, Sem. Hemat., 11, 525–548 (1974).

    CAS  Google Scholar 

  2. Hammerberg, B., Brett, I., and Kitchen, H., Ann. N. Y. Acad. Sci., 241, 672–681 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Evans, M. J., and Lingrel, J. B., Biochemistry, 8, 3000–3005 (1969).

    Article  CAS  PubMed  Google Scholar 

  4. Aviv, H., and Leder, P., Proc. natn. Acad. Sci. U.S.A., 69, 1408–1412 (1972).

    Article  ADS  CAS  Google Scholar 

  5. Gould, H. J., and Hamlyn, P. H., FEBS Lett., 30, 301–304 (1973).

    Article  CAS  PubMed  Google Scholar 

  6. Kazazian, H. H., Jr, Snyder, P. B., and Cheng, T-c., Biochem. biophys. Res. Commun., 59, 1053–1061 (1974).

    Article  CAS  PubMed  Google Scholar 

  7. Morrison, M. R., Brinkley, S. A., Gorski, J., and Lingrel, J. B., J. biol. Chem., 249, 5290–5295 (1974).

    CAS  PubMed  Google Scholar 

  8. Berns, A., Jansen, P., and Bloemendal, H., FEBS Lett., 47, 343–346 (1974).

    Article  CAS  PubMed  Google Scholar 

  9. Hamlyn, P. H., and Gould, H. J., J. molec. Biol., 94, 94, 101–109 (1975).

  10. Forget, B. G., Housman, D., Benz, E. J., Jr, and McCaffrey, R. P., Proc. natn. Acad. Sci. U.S.A., 72, 984–988 (1975).

    Article  ADS  CAS  Google Scholar 

  11. Kazazian, H. H., Jr, Ginder, G. D., Snyder, P. G., VanBeneden, R. J., and Woodhead, A. P., Proc. natn. Acad. Sci. U.S.A., 72, 567–571 (1975).

    Article  ADS  CAS  Google Scholar 

  12. Mathews, M. B., and Korner, A., Eur. J. Biochem., 17, 328–343 (1970).

    Article  CAS  PubMed  Google Scholar 

  13. Cividalli, G., Nathan, D. G., Kan, Y. W., Santamarina, B., and Frigoletto, F., Pediat. Res., 8, 553–560 (1974).

    Article  CAS  PubMed  Google Scholar 

  14. Huisman, T. H. J., and Schroeder, W. A., CRC Crit. Rev. clin. lab. Sci., 1, 471–526 (1970).

    Article  CAS  PubMed  Google Scholar 

  15. Hollenberg, M. D., Kaback, M. M., and Kazazian, H. H., Jr, Science, 174, 698–702 (1971).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Kazazian, H. H., Jr, and Woodhead, A. P., New Engl. J. Med., 289, 58–62 (1973).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KAZAZIAN, H., SILVERSTEIN, A., SNYDER, P. et al. Increasing haemoglobin β-chain synthesis in foetal development is associated with a declining γ- to α-mRNA ratio. Nature 260, 67–70 (1976). https://doi.org/10.1038/260067a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/260067a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing