Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Possible regeneration of γ-aminobutyric acid-containing fibres into irides transplanted into the central nervous system

Abstract

IRIDES transplanted into the central nervous system (CNS) of the rat provide a good substrate for regenerative ingrowth of central noradrenergic and cholinergic fibres to ‘reinnervate’ the denervated iris1–3. Fluorescence histo-chemistry or acetylcholinesterase staining reveals that the regenerating noradrenergic or cholinergic fibres will produce an innervation that closely mimics the original noradrenergic or cholinergic innervation1–3. Physiological experiments4 on portal vein transplants indicate that functional adrenergic and cholinergic terminals are formed, and it seems likely that functional neuromuscular junctions are also re-established in the iris transplants. In addition to supporting the ingrowth of noradrenergic and cholinergic fibres, fluorescence histochemistry2 reveals that 5-hydroxy-tryptamine- and dopamine-containing fibres will also grow into iris transplants, albeit less extensively than noradrenergic fibres. This ability of the iris to support regenerative ingrowth by fibres not entirely appropriate for normal re-innervation suggested to us that the iris might also support regenerative ingrowth by fibres containing putative amino acid transmitters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Björklund, A., and Stenevi, U., Brain Res., 31, 1 (1971).

    Article  Google Scholar 

  2. Svendgaard, N. A., Björklund, A., and Stenevi, U., Adv. Anat. Embryol. Cell Biol., 51, 1 (1975).

    Google Scholar 

  3. Svendgaard, N. A., Björklund, A., and Stenevi, U., Brain Res., 102, 1 (1976).

    Article  CAS  Google Scholar 

  4. Björklund, A., Johansson, B., Stenevi, U., and Svendgaard, N. A., Nature, 253, 446 (1975).

    Article  ADS  Google Scholar 

  5. Fonnum, F., Biochem. J., 106, 401 (1968).

    Article  CAS  Google Scholar 

  6. Fonnum, F., and Walberg, F., Brain Res., 62, 577 (1973).

    Article  CAS  Google Scholar 

  7. Joseph, M. H., and Haliday, J., Analyt. Biochem., 64, 389 (1975).

    Article  CAS  Google Scholar 

  8. Olson, L., and Malmfors, T., Acta physiol. scand. suppl., 348, (1970).

  9. Albers, R. W., and Brady, R. O., J. biol. Chem., 234, 926 (1959).

    CAS  PubMed  Google Scholar 

  10. Fonnum, F., Storm-Mathisen, J., and Walberg, F., Brain Res., 20, 259 (1970).

    Article  CAS  Google Scholar 

  11. MacDonnel, P., and Greengard, O., J. Neurochem., 24, 615 (1975).

    Article  Google Scholar 

  12. Campbell, G. R., Uehara, Y., Malmfors, T., and Burnstock, G., Z. Zellforsch, 117, 155 (1971).

    Article  CAS  Google Scholar 

  13. Lowry, O. H., Rosenborough, N. H., Farr, A. L., and Randall, R. J., J. biol. Chem., 193, 65 (1951).

    Google Scholar 

  14. Storm-Mathisen, J., Brain Res., 87, 107 (1975).

    Article  CAS  Google Scholar 

  15. Emson, P. C., and Joseph, M. H., Brain Res., 93, 91 (1975).

    Article  CAS  Google Scholar 

  16. Minchin, M. E. W., and Beart, P. M., J. Neurochem., 24, 881 (1975).

    Article  CAS  Google Scholar 

  17. Riefenstein, R. J., and Neal, M. J., Can. J. Physiol. Pharmac., 52, 667 (1974).

    Google Scholar 

  18. Harvey, J. A., Scholfield, C. N., Graham, L. T., Jr, and Aprison, M. H., J. Neurochem., 24, 445 (1975).

    Article  CAS  Google Scholar 

  19. Synder, S. H., Young, A. B., Bennet, J. P., and Mulder, A. H., Fedn Proc., 32, 2039 (1974).

    Google Scholar 

  20. Curtis, D. R., et al., Brain Res., 41, 283 (1972).

    Article  CAS  Google Scholar 

  21. Storm-Mathisen, J., and Fonnum, F., Progr. Brain Res., 36, 40 (1972).

    Google Scholar 

  22. Kataoka, K., Bak, I., Hassler, R., Kim, J. S., and Wagner, A., Expl Brain Res., 19, 217 (1972).

    Google Scholar 

  23. Haber, E., Kuriyama, K., and Roberts, E., Biochem. Pharmac., 19, 1119 (1970).

    Article  CAS  Google Scholar 

  24. Baxter, C. F., and Torralba, G. F., Proc. 3rd Int. Meeting Int. Soc. Neurochem., (Budapest), 337 (1971).

    Google Scholar 

  25. Baxter, C. F., and Torralba, G. F., Brain Res., 84, 383 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

EMSON, P., BJÖRKLUND, A. & STENEVI, U. Possible regeneration of γ-aminobutyric acid-containing fibres into irides transplanted into the central nervous system. Nature 259, 567–570 (1976). https://doi.org/10.1038/259567a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/259567a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing