Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Galactic dust lanes and lunar soil

Abstract

IT has been proposed by McCrea1, Shapley2 and Hoyle and Lyttleton3 that passages of the Solar System through interstellar clouds have appreciable effects on the Earth. McCrea argues that the recurrence of ice epochs4 every 250 Myr coincides with the passage of the Solar System through a galactic spiral arm approximately every 108 yr. We report here studies on the character and grain-size distribution of texturally-mature lunar soils which support these views. The evidence shows the flux of micrometeoroids ( 10−6 g) at the lunar surface has remained in quasi-equilibrium near the present-day value over the past 2×109 yr, but that significant increases have occurred. Three near-cyclical enhancements are superimposed on the drill core stratigraphy, with separations of 108 yr. The magnitudes, durations, and periodicity of the flux increases suggest their origin may be the passage of the Solar System through dust lanes in the galactic spiral arms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McCrea, W. H., Nature, 255, 607–609 (1975).

    Article  ADS  Google Scholar 

  2. Shapley, H., J. Geol., 29, 502–504 (1921).

    Article  ADS  Google Scholar 

  3. Hoyle, F., and Lyttleton, R. A., Proc. Camb. Phil. Soc., 35, 405–415 (1939).

    Article  ADS  Google Scholar 

  4. Seyfert, C. K., and Sirkin, L. A., Earth History and Plate Tectonics, 455 (Harper and Row, New York, 1973).

    Google Scholar 

  5. Lindsay, J. F., Bull. Geol. Soc. Am. (in the press).

  6. Lindsay, J. F., Proc. Fifth Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 5, 1, 861–878 (1974).

    Google Scholar 

  7. Lindsay, J. F., J. Sedim. Petrol., 41, 780–797 (1971).

    Article  Google Scholar 

  8. Lindsay, J. F., J. Sedim. Petrol., 42, 876–888 (1972).

    Google Scholar 

  9. Gault, D. E., Hörz, F., and Hartung, J. B., Proc. Third Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 3, 3, 2713–2734 (1972).

    Google Scholar 

  10. McKay, D. S., Heiken, G. H., Taylor, R. M., Clanton, U. S., and Morrison, D. A., Proc. Third Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 3, 1, 983–994 (1972).

    CAS  Google Scholar 

  11. Dohnany, J. S., Icarus, 17, 1–48 (1972).

    Article  ADS  Google Scholar 

  12. Peace, W., Gose, W., and Lindsay, J., Proc. Sixth Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 6 (in the press).

  13. Quaide, W., and Oberbeck, V., The Moon, 13 (in the press).

  14. Papanastassiou, D. A., and Wasserburg, G. J., Earth planet. Sci. Lett., 17, 324–337 (1973).

    Article  ADS  CAS  Google Scholar 

  15. Nakamura, Y., Dorman, J., Duennebier, F., and Latham, G., The Moon, 13 (in the press).

  16. Hartung, J. B., and Störzer, D., Proc. Fifth Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 5 3, 2527–2541 (1974).

    Google Scholar 

  17. Biermann, L., The Zodical Light and the Interplanetary Medium, 279–286 (NASA SP-150, Washington DC, 1967).

    Google Scholar 

  18. Rhee, J. W., Berg, O. E., and Richardson, F. F., Geophys. Res. Lett., 1, 345–346 (1974).

    Article  ADS  Google Scholar 

  19. Humes, D. H., Alvarez, J. M., Kinard, W. H., and O'Neal, R. L., Science, 188, 473–474 (1975).

    Article  ADS  CAS  Google Scholar 

  20. Lyttleton, R. A., Astrophys. Space Sci., 34, 491–510 (1975).

    Article  ADS  Google Scholar 

  21. Hoffman, H. J., Fechtig, H., Green, E., and Kissel, J., (unpublished).

  22. Lyttleton, R. A., Astrophys. Space Sci., 31, 385–401 (1974).

    Article  ADS  Google Scholar 

  23. Gault, D. E., Hörz, F., Brownlee, D. E., and Hartung, J. B., Proc. Fifth Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 5, 3, 2365–2386 (1974).

    Google Scholar 

  24. Laul, J. C., Morgan, J. W., Ganapathy, R., and Anders, E., Proc. Second Lunar Sci. Conf. Geochim. Cosmochim. Acta, Suppl. 2, 2, 1139–1158 (1971).

    Google Scholar 

  25. Oort, J. H., Bull. Astr. Inst. Neth., 11, 91 (1950).

    ADS  Google Scholar 

  26. Allen, C. W., Astrophysical Quantities (third ed.), (Athlone Press, London, 1973).

    Google Scholar 

  27. Spitzer, L., in Nebulae and Interstellar Matter, (edit. by Kuiper, G., and Middle-hurst, B.), 1–58 (Univ. Chicago Press, Chicago, 1968).

    Google Scholar 

  28. Greenberg, J. M., in Intersteller Gas Dynamics, 306–315 (D. Reidel, 1970).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LINDSAY, J., SRNKA, L. Galactic dust lanes and lunar soil. Nature 257, 776–778 (1975). https://doi.org/10.1038/257776a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/257776a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing