Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Absorption of soft X rays by material within Gould's Belt

Abstract

EARLY surveys of the soft X-ray diffuse background revealed an overall decrease of 250 eV intensity from the galactic pole to the galactic plane1−5. The effect was attributed to absorption by interstellar gas and it was widely accepted that a substantial fraction of the flux originated from beyond the galactic disk. But the detection of emission from the plane of the Galaxy2,3 (unit optical depth 200 pc) and from the vicinity of a radio continuum feature, the North Polar Spur6,7, demonstrated that at least part of the flux is galactic in origin. Recent surveys8,9 provide greater sensitivity and reliability. The 250eV results have been combined in Fig. 1. From these data it has been shown that several regions of enhanced emission are associated with radio continuum or Hα features, and that there is no simple quantitative relationship between the soft X-ray intensity and 21-cm values of neutral hydrogen column density. It has been concluded on this basis that most if not all of the flux is generated within the Galaxy (refs 8, 9 and A. N. Bunner, unpublished). Since stellar sources or diffuse non-thermal processes cannot easily account for the observed intensity8,10, thermal bremsstrahlung from a hot gas is now accepted as the most probable source mechanism. The discovery of a shallow OVI absorption line in the spectra of many nearby stars supports this hypothesis11−13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bowyer, C. S., Field, G. B., and Mack, J. E., Nature, 217, 32 (1968).

    Article  ADS  Google Scholar 

  2. Henry, R. C., Fritz, G., Meekins, J. F., Friedman, H., and Byram, E. T., Astrophys. J. Lett., 153, L11 (1968).

    Article  ADS  Google Scholar 

  3. Bunner, A. N., et al., Nature, 223, 1222 (1969).

    Article  ADS  Google Scholar 

  4. Kato, T., Astrophys. Space Sci., 16, 478 (1972).

    Article  ADS  Google Scholar 

  5. Davidsen, A., et al., Astrophys. J., 177, 629 (1972).

    Article  ADS  CAS  Google Scholar 

  6. Bunner, A. N., Coleman, P. L., Kraushaar, W. L., and McCammon, D., Astrophys. J. Lett., 172, L67 (1972).

    Article  ADS  Google Scholar 

  7. De Korte, P. A. J., Bleeker, J. A. M., Deerenberg, A. J. M., Tanaka, Y., and Yamashita, K., Astrophys. J. Lett., 190, L5 (1974).

    Article  ADS  Google Scholar 

  8. Williamson, F. O., et al., Astrophys. J. Lett., 193, L133 (1974).

    Article  ADS  CAS  Google Scholar 

  9. De Korte, P. A. J., thesis, Univ. Leiden (1975).

  10. Vanderhill, M. J., Borken, R. J., Bunner, A. N., Burstein, P. H., and Kraushaar, W. L., Astrophys. J. Lett. (in the press).

  11. York, D. G., Astrophys. J. Lett., 193, L127 (1974).

    Article  ADS  CAS  Google Scholar 

  12. Jenkins, E. B., and Meloy, D. A., Astrophys. J. Lett., 193, L121 (1974).

    Article  ADS  CAS  Google Scholar 

  13. Kraushaar, W. L., Astrophys. J. (in the press),

  14. Gould, B. A., Uranometria Argentina, 335 (1879).

  15. Shapley, H., Astrophys. J., 49, 311 (1919).

    Article  ADS  Google Scholar 

  16. Hubble, E., Astrophys. J., 56, 162 (1922).

    Article  ADS  Google Scholar 

  17. Davies, R. D., Mon. Mot. R. astr. Soc., 120, 483 (1960).

    Article  ADS  CAS  Google Scholar 

  18. Goldstein, S. J., and MacDonald, Delphine, D., Astrophys. J., 157, 1101 (1969).

    Article  ADS  CAS  Google Scholar 

  19. Fejes, I., and Wesselius, P. R., Astr. Astrophys., 24, 1 (1973).

    ADS  Google Scholar 

  20. Reynolds, R. J., Roesler, F. L., and Scherb, F., Astrophys. J. Lett., 192, L53 (1974).

    Article  ADS  CAS  Google Scholar 

  21. Hayakawa, S., et al., Astrophys. J., 195, 535 (1975).

    Article  ADS  CAS  Google Scholar 

  22. Berkhuijsen, Elly M., Haslam, C. G. T., and Salter, C. J., Astr. Astrophys., 14, 252 (1971).

    ADS  Google Scholar 

  23. Cox, D. P., and Smith, B. W., Astrophys. J. Lett., 189, L105 (1974).

    Article  ADS  CAS  Google Scholar 

  24. Spoelstra, T. A. TH., Astr. Astrophys., 21, 61 (1972).

    ADS  Google Scholar 

  25. Spoelstra, T. A. TH., Astr. Astrophys., 24, 149 (1973).

    ADS  Google Scholar 

  26. Brown, R. L., and Gould, R. J., Phys. Rev. D., 1, 2252 (1970).

    Article  ADS  Google Scholar 

  27. Berkhuijsen, Elly M., Astr. Astrophys., 14, 359 (1971).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

RAPLEY, C. Absorption of soft X rays by material within Gould's Belt. Nature 255, 41–42 (1975). https://doi.org/10.1038/255041a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/255041a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing