Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamic properties of bacterial flagellar motors

Abstract

TETHERED bacteria1 rotate at the angular velocity at which the torque generated by the flagellar motor2 is balanced by the torque due to the viscous drag. In general, M = Ω, where M is the torque, η is the viscosity, Ω is the angular velocity, and b is a coefficient which depends on the size and the shape of the cell, the position of the axis of rotation, and the distance between the cell and the wall. For a sphere of radius a (not too close to the wall) M = 8πη a3Ω (ref. 3). Viscous forces are so large in comparison with inertial forces4 that Ω will change with M virtually instantaneously; any discontinuities in the one will be evident in the other. Consider a cell of radius a and uniform density ρ rotating at an angular velocity Ω0; if its motor is suddenly disengaged, Ω will decay exponentially to 0 with a time constant ρ a2/15η, and the cell will stop in Ωρ a2/15η radians. For Escherichia coli this is less than a millionth of a revolution. The cell also is subject to rotational diffusion, but this will be evident only if the coupling between the flagellum and the body of the cell is fluid. The root-mean-square deviation in the angular position is (2Dt)½, where D is the rotational diffusion constant and t is the time. For a cell which can rotate freely, D = kT/, where k is Boltzmann's constant and T is the absolute temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Silverman, M., and Simon, M., Nature, 249, 73–74 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Berg, H. C., and Anderson, R. A., Nature, 245, 380 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Landau, L. D., and Lifshitz, E. M., Fluid Mechanics, Ch. 2 (Pergamon, London, 1959).

    Google Scholar 

  4. Taylor, G., Proc. R. Soc., A 209, 447 (1951).

    ADS  Google Scholar 

  5. Berg, H. C., Rev. Sci. Iustrum., 42, 868 (1971).

    Article  ADS  CAS  Google Scholar 

  6. Silverman, M., and Simon, M. I., J. Bact., 112, 986 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Armstrong, J. B., Adler, J., and Dahl, M. M., J. Bact., 93, 390 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Larsen, S. H., Reader, R. W., Kort, E. N., Tso, W.-W., and Adler, J., Nature, 249, 74–77 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Berg, H. C., and Brown, D. A., Nature, 239, 500 (1972).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Vaituzis, Z., and Doetsch, R. N., J. Bact., 89, 1586 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Vaituzis, Z., and Doetsch, R. N., J. Bact., 91, 2103 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Okrend, A. G., and Doetsch, R. N., Arch. Mikrobiol., 69, 69 (1969).

    Article  CAS  PubMed  Google Scholar 

  13. DePamphilis, M. L., and Adler, J., J. Bact., 105, 384 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. DePamphilis, M. L., and Adler, J., J. Bact., 105, 396 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Larsen, S. H., Adler, J., Gargus, J. J., and Hogg, R. W., Proc. natn. Acad. Sci. U.S.A. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BERG, H. Dynamic properties of bacterial flagellar motors. Nature 249, 77–79 (1974). https://doi.org/10.1038/249077a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/249077a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing