Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Human myeloma cells express the bone regulating gene Runx2/Cbfa1 and produce osteopontin that is involved in angiogenesis in multiple myeloma patients

Abstract

Osteopontin (OPN) is a multifunctional bone matrix glycoprotein that is involved in angiogenesis, cell survival and tumor progression. In this study we show that human myeloma cells directly produce OPN and express its major regulating gene Runx2/Cbfa1. The activity of Runx2/Cbfa1 protein in human myeloma cells has also been demonstrated. Moreover, using small interfering RNA (siRNA) to silent Runx2 in myeloma cells, we suppressed OPN mRNA and protein expression. OPN production in myeloma cells was stimulated by growth factors as IL-6 and IFG-1 and in turn OPN stimulated myeloma cell proliferation. In an ‘in vitro’ angiogenesis system we showed that OPN production by myeloma cells is critical for the proangiogenic effect of myeloma cells. The expression of OPN by purified bone marrow (BM) CD138+ cells has also been investigated in 60 newly diagnosed multiple myeloma (MM) patients, finding that 40% of MM patients tested expressed OPN. Higher OPN levels have been detected in the BM plasma of MM patients positive for OPN as compared to controls. Moreover, significantly higher BM angiogenesis has been observed in MM patients positive for OPN as compared to those negative. Our data highlight that human myeloma cells with active Runx2/Cbfa1 protein directly produce OPN that is involved in the pathophysiology of MM-induced angiogenesis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Vacca A, Ribatti D, Presta M, Minischetti M, Iurlaro M, Ria R et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 1999; 93: 3064–3073.

    CAS  PubMed  Google Scholar 

  2. Moehler TM, Ho AD, Goldschmidt H, Barlogie B . Angiogenesis in hematologic malignancies. Crit Rev Oncol Hematol 2003; 45: 227–244.

    Article  CAS  Google Scholar 

  3. Munshi NC, Wilson C . Increased bone marrow microvessel density in newly diagnosed multiple myeloma carries a poor prognosis. Semin Oncol 2001; 28: 565–569.

    Article  CAS  Google Scholar 

  4. Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Fonseca R et al. Expression of VEGF and its receptors by myeloma cells. Leukemia 2003; 17: 2025–2031.

    Article  CAS  Google Scholar 

  5. Bisping G, Leo R, Wenning D, Dankbar B, Padro T, Kropff M et al. Paracrine interactions of basic fibroblast growth factor and interleukin-6 in multiple myeloma. Blood 2003; 101: 2775–2783.

    Article  CAS  Google Scholar 

  6. Giuliani N, Colla S, Lazzaretti M, Sala R, Roti G, Mancini C et al. Pro-angiogenetic properties of human myeloma cells: production of angiopoietin-1 and its potential relationship with myeloma-induced angiogenesis. Blood 2003; 102: 638–645.

    Article  CAS  Google Scholar 

  7. Mazzali M, Kipari T, Ophascharoensuk V, Wesson JA, Johnson R, Hughes J . Osteopontin – a molecule for all seasons. Q J Med 2002; 95: 3–13.

    Article  CAS  Google Scholar 

  8. Sato M, Morii E, Komori T, Sato M, Morii E, Komori T et al. Transcriptional regulation of osteopontin gene in vivo by PEBP2alphaA/CBFA1 and ETS1 in the skeletal tissues. Oncogene 1998; 17: 1517–1525.

    Article  CAS  Google Scholar 

  9. Inman CK, Shore P . The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. J Biol Chem 2003; 278: 48684–48689.

    Article  CAS  Google Scholar 

  10. Barnes GL, Javed A, Waller SM, Kamal MH, Hebert KE, Hassan MQ et al. Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res 2003; 63: 2631–2637.

    CAS  PubMed  Google Scholar 

  11. Harada H, Tagashira S, Fujiwara M, Ogawa S, Katsumata T, Yamaguchi A et al. Cbfa1 isoforms exert functional differences in osteoblast differentiation. J Biol Chem 1999; 274: 6972–6978.

    Article  CAS  Google Scholar 

  12. Liu YN, Kang BB, Chen JH . Transcriptional regulation of human osteopontin promoter by C/EBPalpha and AML-1 in metastatic cancer cells. Oncogene 2004; 23: 278–288.

    Article  CAS  Google Scholar 

  13. Scatena M, Almeida M, Chaisson ML, Fausto N, Nicosia RF, Giachelli CM . NF-kappaB mediates alphavbeta3 integrin-induced endothelial cell survival. J Cell Biol 1998; 141: 1083–1093.

    Article  CAS  Google Scholar 

  14. Senger DR, Ledbetter SR, Claffey KP, Papadopoulos-Sergiou A, Peruzzi CA, Detmar M . Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J Pathol 1996; 149: 293–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liaw L, Almeida M, Hart CE, Schwartz SM, Giachelli CM . Osteopontin promotes vascular cell adhesion and spreading and is chemotactic for smooth muscle cells in vitro. Circ Res 1994; 74: 214–224.

    Article  CAS  Google Scholar 

  16. Takahashi F, Akutagawa S, Fukumoto H, Tsukiyama S, Ohe Y, Takahashi K et al. Osteopontin induces angiogenesis of murine neuroblastoma cells in mice. Int J Cancer 2002; 98: 707–712.

    Article  CAS  Google Scholar 

  17. Hirama M, Takahashi F, Takahashi K, Akutagawa S, Shimizu K, Soma S et al. Osteopontin overproduced by tumor cells acts as a potent angiogenic factor contributing to tumor growth. Cancer Lett 2003; 198: 107–117.

    Article  CAS  Google Scholar 

  18. Rittling SR, Chen Y, Feng F, Wu Y . Tumor-derived osteopontin is soluble, not matrix associated. J Biol Chem 2002; 277: 9175–9182.

    Article  CAS  Google Scholar 

  19. Carlinfante G, Vassiliou D, Svensson O, Wendel M, Heinegard D, Andersson G . Differential expression of osteopontin and bone sialoprotein in bone metastasis of breast and prostate carcinoma. Clin Exp Metast 2003; 20: 437–444.

    Article  CAS  Google Scholar 

  20. Saeki Y, Mima T, Ishii T, Ogata A, Kobayashi H, Ohshima S et al. Enhanced production of osteopontin in multiple myeloma: clinical and pathogenic implications. Br J Haematol 2003; 123: 263–270.

    Article  CAS  Google Scholar 

  21. Standal T, Hjorth-Hansen H, Rasmussen T, Dahl IM, Lenhoff S, Brenne AT et al. Osteopontin is an adhesive factor for myeloma cells and is found in increased levels in plasma from patients with multiple myeloma. Haematologica 2004; 89: 174–182.

    CAS  PubMed  Google Scholar 

  22. Renard P, Ernest I, Houbion A, Art M, Le Calvez H, Raes M et al. Development of a sensitive multi-well colorimetric assay for active NFkappaB. Nucleic Acids Res 2001; 29: E21.

    Article  CAS  Google Scholar 

  23. Helbling D, Mueller BU, Timchenko NA, Hagemeijer A, Jotterand M, Meyer-Monard S et al. The leukemic fusion gene AML1-MDS1-EVI1 suppresses CEBPA in acute myeloid leukemia by activation of Calreticulin. Proc Natl Acad Sci USA 2004; 101: 13312–13317.

    Article  CAS  Google Scholar 

  24. Colla S, Morandi F, Lazzaretti M, Polistena P, Svaldi M, Coser P et al. Do human myeloma cells directly produce basic FGF? Blood 2003; 102: 3071–3072.

    Article  CAS  Google Scholar 

  25. Angelucci A, Festuccia C, Gravina GL, Muzi P, Bonghi L, Vicentini C et al. Osteopontin enhances the cell proliferation induced by the epidermal growth factor in human prostate cancer cells. Prostate 2004; 59: 157–166.

    Article  CAS  Google Scholar 

  26. Castellone MD, Celetti A, Guarino V, Cirafici AM, Basolo F, Giannini R et al. Autocrine stimulation by osteopontin plays a pivotal role in the expression of the mitogenic and invasive phenotype of RET/PTC-transformed thyroid cells. Oncogene 2004; 23: 2188–2196.

    Article  CAS  Google Scholar 

  27. Behrend EI, Craig AM, Wilson SM, Denhardt DT, Chambers AF . Reduced malignancy of ras-transformed NIH 3T3 cells expressing antisense osteopontin RNA. Cancer Res 1994; 54: 832–837.

    CAS  PubMed  Google Scholar 

  28. Abe M, Hiura K, Wilde J, Shioyasono A, Moriyama K, Hashimoto T et al. Osteoclasts enhance myeloma cell growth and survival via cell–cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood 2004; 104: 2484–2491.

    Article  CAS  Google Scholar 

  29. Vincent T, Mechti N . IL-6 regulates CD44 cell surface expression on human myeloma cells. Leukemia 2004; 18: 967–975.

    Article  CAS  Google Scholar 

  30. Lin YH, Huang CJ, Chao JR, Chen ST, Lee SF, Yen JJ et al. Coupling of osteopontin and its cell surface receptor CD44 to the cell survival response elicited by interleukin-3 or granulocyte-macrophage colony-stimulating factor. Mol Cell Biol 2000; 20: 2734–2742.

    Article  CAS  Google Scholar 

  31. Leali D, Dell'Era P, Stabile H, Sennino B, Chambers AF, Naldini A et al. Osteopontin (Eta-1) and fibroblast growth factor-2 cross-talk in angiogenesis. J Immunol 2003; 171: 1085–1093.

    Article  CAS  Google Scholar 

  32. Philip S, Bulbule A, Kundu GC . Osteopontin stimulates tumor growth and activation of promatrix metalloproteinase-2 through nuclear factor-kappa B-mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells. J Biol Chem 2001; 276: 44926–44935.

    Article  CAS  Google Scholar 

  33. Barille S, Akhoundi C, Collette M, Mellerin MP, Rapp MJ, Harousseau JL et al. Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells. Blood 1997; 90: 1649–1655.

    CAS  PubMed  Google Scholar 

  34. Duong LT, Lakkakorpi P, Nakamura I, Rodan GA . Integrins and signaling in osteoclast function. Matrix Biol 2000; 19: 97–105.

    Article  CAS  Google Scholar 

  35. Karsenty G . Minireview: transcriptional control of osteoblast differentiation. Endocrinology 2001; 142: 2731–2733.

    Article  CAS  Google Scholar 

  36. Barille S, Pellat-Deceunynck C, Bataille R, Amiot M . Ectopic secretion of osteocalcin, the major non-collagenous bone protein, by the myeloma cell line NCI-H929. J Bone Miner Res 1996; 11: 466–471.

    Article  CAS  Google Scholar 

  37. Shui C, Spelsberg TC, Riggs BL, Khosla S . Changes in Runx2/Cbfa1 expression and activity during osteoblastic differentiation of human bone marrow stromal cells. J Bone Miner Res 2003; 18: 213–221.

    Article  CAS  Google Scholar 

  38. Choi SJ, Oba T, Callander NS, Jelinek DF, Roodman GD . AML-1A and AML-1B regulation of MIP-1alpha expression in multiple myeloma. Blood 2003; 101: 3778–3783.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Giuliani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colla, S., Morandi, F., Lazzaretti, M. et al. Human myeloma cells express the bone regulating gene Runx2/Cbfa1 and produce osteopontin that is involved in angiogenesis in multiple myeloma patients. Leukemia 19, 2166–2176 (2005). https://doi.org/10.1038/sj.leu.2403976

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403976

Keywords

This article is cited by

Search

Quick links