Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetic Relaxation in Ordered Systems

Abstract

NUCLEAR magnetic resonance (NMR) spectroscopy is one of the most promising techniques to be recently applied to the study of lipid, protein and water interactions in biological and other ordered and semi-ordered systems. NMR studies of the water in many hydrated biological systems have been interpreted in terms of the existence of “structured”, “ice-like” or “bound” water1–6. Likewise, line broadening in ordered liquid crystalline and biological systems has often been taken as an indication of restriction of molecular motion7–13. We should like to point out some possible pitfalls in interpreting the results of limited relaxation or line width data in terms of changes in molecular mobility arising from specific interactions, in systems which are not isotropic liquids and are not always homogeneous. We have carried out a spin-echo NMR study of the dimethyldodecylamine oxide–deuterium oxide system—a system in which anisotropic ordered structures exist and one for which considerable X-ray and continuous wave NMR data are available9,14. This system is an ideal one for the study of the effects of molecular ordering and anisotropy on the measured NMR parameters because the structure can be changed from isotropic to anisotropic simply by a slight change in composition or temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cope, F. W., Biophys. J., 9, 303 (1969).

    Article  ADS  CAS  Google Scholar 

  2. Dehl, R. C., and Haine, C. A. F., J. Chem. Phys., 50, 3245 (1969).

    Article  ADS  CAS  Google Scholar 

  3. Kuntz, I. D., Brossfield, J. S., Law, G. D., and Purcell, G. V., Science, 163, 1329 (1969).

    Article  ADS  CAS  Google Scholar 

  4. Glasel, J. A., Nature, 218, 953 (1968).

    Article  ADS  CAS  Google Scholar 

  5. Kruger, G. J., and Helcke, Magnetic Resonance and Relaxation (edit. by Blinc, R., Hadzi, D., and Osredkar, M.), 1136 (North-Holland, Amsterdam, 1967).

    Google Scholar 

  6. Hazelwood, C. F., Nichols, B. L., and Chamberlain, N. F., Nature, 222, 747 (1969).

    Article  ADS  Google Scholar 

  7. Chapman, D., Kamat, V. B., de Gier, J., and Penkett, S. A., Nature, 213, 74 (1967).

    Article  ADS  CAS  Google Scholar 

  8. Chapman, D., Kamat, V. B., de Gier, J., and Penkett, S. A., J. Mol. Biol., 31, 101 (1968).

    Article  CAS  Google Scholar 

  9. Lawson, K. D., and Flautt, T. J., J. Phys. Chem., 72, 2066 (1968).

    Article  CAS  Google Scholar 

  10. Jenkinson, T. J., Kamat, V. B., and Chapman, D., Biochim. Biophys. Acta, 183, 427 (1969).

    Article  CAS  Google Scholar 

  11. Chapman, D., Leslie, R. B., Hirz, R., and Scanu, A. M., Biochim. Biophys. Acta, 176, 524 (1969).

    Article  CAS  Google Scholar 

  12. Leslie, R. B., Chapman, D., and Scanu, A. M., Chem. Phys. Lipids, 3, 152 (1969).

    Article  CAS  Google Scholar 

  13. Veksli, Z., Salsbury, N. J., and Chapman, D., Biochim. Biophys. Acta, 183, 434 (1969).

    Article  CAS  Google Scholar 

  14. Lawson, K. D., Mabis, A. J., and Flautt, T. J., J. Chem. Phys., 72, 2058 (1968).

    Article  CAS  Google Scholar 

  15. Penkett, S. A., Flook, A. G., and Chapman, D., Chem. Phys. Lipids, 2, 273 (1968).

    Article  CAS  Google Scholar 

  16. Sheard, B., Nature, 223, 1057 (1969).

    Article  ADS  CAS  Google Scholar 

  17. Carr, H. Y., and Purcell, E. M., Phys. Rev., 94, 630 (1954).

    Article  ADS  CAS  Google Scholar 

  18. Meiboom, S., and Gill, D., Rev. Sci. Instr., 29, 688 (1958).

    Article  ADS  CAS  Google Scholar 

  19. Buchta, J. C., Gutowsky, H. S., and Woessner, D. E., Rev. Sci. Instr., 29, 55 (1958).

    Article  ADS  CAS  Google Scholar 

  20. Abragam, A., The Principles of Nuclear Magnetism, chap. 8 (Oxford Univ. Press, London, 1961).

    Google Scholar 

  21. Odajima, A., Progr. Theor. Phys. (Kyota), Suppl., 10, 142 (1959).

    Article  ADS  Google Scholar 

  22. Connor, T. M., Trans. Faraday Soc., 60, 1574 (1964).

    Article  CAS  Google Scholar 

  23. Allerhand, A., and Gutowsky, H. S., J. Chem. Phys., 41, 2115 (1964).

    Article  ADS  CAS  Google Scholar 

  24. Woessner, D. E., J. Phys. Chem., 67, 1365 (1963).

    Article  CAS  Google Scholar 

  25. Zamir, D., Wayne, R. C., and Cotts, R. M., Phys. Rev. Lett., 12, 327 (1964).

    Article  ADS  CAS  Google Scholar 

  26. Anderson, J. E., and Liu, Kang-Jen, J. Chem. Phys., 49, 2850 (1968).

    Article  ADS  CAS  Google Scholar 

  27. Anderson, J. E., J. Chem. Phys., 50, 1474 (1969).

    Article  ADS  CAS  Google Scholar 

  28. Lowe, I. J., and Norberg, R. E., Phys. Rev., 107, 46 (1957).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HANSEN, J., LAWSON, K. Magnetic Relaxation in Ordered Systems. Nature 225, 542–544 (1970). https://doi.org/10.1038/225542a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/225542a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing