Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Active Ionic Transport across Biological Membranes: Possible Role of Electrons and Protons

Abstract

THE conversion of metabolic energy into useful work is a very efficient process in biological cells. The energy in ATP is transformed into mechanical, electrical and osmotic work at efficiencies which have been calculated to approach 100 per cent for acid secretion in the stomach1, active Na+ transport in frog skin2 and sartorius muscle contraction3. These observations show that energy is converted in biological cells by a process which is not limited by a Carnot efficiency factor (about 2 per cent in warm blooded animals). The process could involve electrochemical “cold” combustion, in which chemical energy is transformed into electronic potential energy, in much the same way as the operation of a fuel cell4. Accordingly, Mitchell5,6 likened the oxido/reduction and phosphorylation processes in his chemiosmotic hypothesis to a protonic fuel cell in which ATP synthesis was construed as a vectorial reaction driven by a “proton-motive” force across the mitochondrial membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Crane, E. E., and Davies, R. E., Biochem. J., 49, 169 (1951).

    Article  CAS  Google Scholar 

  2. Ussing, H. H., Protoplasma, 63, 292 (1967).

    Article  CAS  Google Scholar 

  3. Kushmerick, M. J., and Davies, R. E., Proc. Roy. Soc., B, 174, 315 (1969).

    Article  ADS  CAS  Google Scholar 

  4. Bockris, J. O'M., and Srinivasan, S., Nature, 215, 197 (1967).

    Article  ADS  CAS  Google Scholar 

  5. Mitchell, P., Nature, 191, 144 (1961).

    Article  ADS  CAS  Google Scholar 

  6. Mitchell, P., Fed. Proc., 26, 1370 (1967).

    CAS  PubMed  Google Scholar 

  7. Crane, E. E., and Davies, R. E., Trans. Farad. Soc., 46, 598 (1950).

    Article  Google Scholar 

  8. Bockris, J. O'M., and Conway, B. E., Rec. Chem. Prog., 25, 31 (1964).

    CAS  Google Scholar 

  9. Glasstone, S., Laidler, K. J., and Eyring, H., The Theory of Rate Processes (McGraw-Hill, 1941).

    Google Scholar 

  10. Zwolinsky, B. J., Eyring, H., and Reese, C. E., J. Phys. Coll. Chem., 53, 1426 (1949).

    Article  Google Scholar 

  11. Johnson, F. H., Eyring, H., and Polissar, M. J., The Kinetic Basis of Molecular Biology (Wiley, 1954).

    Google Scholar 

  12. Parlin, R. B., and Eyring, H., in Ion Transport Across Membranes (edit. by Clarke, H. T.) (Academic Press, 1954).

    Google Scholar 

  13. Bockris, J. O'M., and Reddy, A. K., Modern Electrochemistry: An Interdisciplinary Study, chap. 8 (Plenum Press, 1969).

    Google Scholar 

  14. Srinivasan, S., Wroblowa, H., and Bockris, J. O'M., Adv. Catal., 17, 352 (1967).

    Google Scholar 

  15. Myamlin, M., and Pleskov, Y., Electrochemistry of Semiconductors (Plenum Press, 1967).

    Book  Google Scholar 

  16. Gutmann, F., and Lyons, L. E., Organic Semiconductors (Wiley, 1967).

    Google Scholar 

  17. Skou, J. C., Physiol. Rev., 45, 596 (1965).

    Article  CAS  Google Scholar 

  18. Kasbekar, D. K., and Durbin, R. P., Biochim. Biophys. Acta, 105, 472 (1965).

    Article  CAS  Google Scholar 

  19. Davies, R. E., Biol. Rev., 26, 87 (1951).

    Article  CAS  Google Scholar 

  20. Moore, J. H., and Shechter, R. S., Nature, 222, 476 (1969).

    Article  ADS  CAS  Google Scholar 

  21. Mandel, L. J., thesis Univ. of Pennsylvania (1969).

  22. Taylor, R. E., Moore, J. W., and Cole, K. S., Biophys. J., 1, 161 (1960).

    Article  CAS  Google Scholar 

  23. Cole, K. S., Membranes, Ions, and Impulses (University of California Press, 1968).

    Google Scholar 

  24. Hille, B., J. Gen. Physiol., 51, 221 (1968).

    Article  CAS  Google Scholar 

  25. Brunton, W., thesis, Univ. Pennsylvania (1969).

  26. Hodgkin, A. L., and Huxley, A. F., J. Physiol., 116, 449 (1952).

    Article  CAS  Google Scholar 

  27. Cole, K. S., and Moore, J. W., J. Gen. Physiol., 44, 137 (1960).

    Article  Google Scholar 

  28. Julian, F. J., Moore, J. W., and Goldman, D. E., J. Gen. Physiol., 45, 1232 (1962).

    Google Scholar 

  29. Dodge, F. A., and Frankenheuser, B., J. Physiol., 143, 83 (1958).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MANDEL, L. Active Ionic Transport across Biological Membranes: Possible Role of Electrons and Protons. Nature 225, 450–451 (1970). https://doi.org/10.1038/225450a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/225450a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing