Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Empirical Correlation between the Molecular Electric Field Gradients and the Average Molecular Polarizabilities of some Halogen Compounds

Abstract

A NUCLEAR quadrupole resonance signal1 is split into two components by electrostatic fields2 with up to maximum field strengths of 50 kV/cm. The separation between the two components is a linear function2 of the polarizability of the molecular species under investigation. The aim of this communication is to demonstrate the general validity of this particular relationship2 which is in fact independent of any restricting experimental conditions, for example application of an electrostatic field (Stark effect2). Although there are relatively few compounds for which both the nuclear quadrupole resonance and molecular polarizability data are available, the general validity of the correlation between the molecular polarizability and nuclear quadrupole resonance parameters, such as the molecular electric field gradients qzz, can be demonstrated conclusively in the series of the homologous compounds CH3C1, CH2Cl2 and CHCl3. The relevant experimental data3–7 are shown in Table 1 and illustrated in Fig. 1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dehmelt, H. G., and Krüger, H., Naturwissenschaften., 37, 111 (1950).

    Article  CAS  ADS  Google Scholar 

  2. Duchesne, J., Read, M., and Cornil, P., J. Phys. Chem. Solids, 24, 1338 (1963).

    Article  Google Scholar 

  3. Livingston, R., J. Phys. Chem., 57, 496 (1953).

    Article  CAS  Google Scholar 

  4. Gutowsky, H., and McCall, D., J. Chem. Phys., 32, 549 (1960).

    Article  ADS  Google Scholar 

  5. Pound, R., and Watkins, G., Prog. Nucl. Phys., 2, 21 (1952).

    Google Scholar 

  6. Livingston, R., Phys. Rev., 82, 289 (1951).

    Article  CAS  ADS  MathSciNet  Google Scholar 

  7. Stuart, H. A., in Die Struktur des Freien Moleküls, 440 (Springer-Verlag, 1952).

    Book  Google Scholar 

  8. Landolt-Börnstein, in Zahlenwerte und Funktionen, 1, Part 3, 515 (Springer-Verlag, 1951).

    MATH  Google Scholar 

  9. Gmelin's Handbuch der Anorganischen Chemie, Silicium, eighth ed.

  10. Landolt-Börnstein, Zahlenwerte und Funktionen, 1, Part 2 260 121, 267 (Springer-Verlag, 1951).

    MATH  Google Scholar 

  11. Clausius, R., Mechanische Wärmetheorie, 2, 94 (1874).

    Google Scholar 

  12. Mosotti, O. F., Mem. Math. Fis. Modena, 24, Part II, 49 (1850).

    Google Scholar 

  13. Townes, C. H., and Dailey, B. P., J. Chem. Phys., 17, 783 (1949).

    Article  ADS  Google Scholar 

  14. Das, T. P., and Hahn, E. L., Solid State Phys., suppl. 1, 101 (1958).

  15. Hückel, W., in Structural Chemistry of Inorganic Compounds, 471 (Elsevier, 1951).

    Google Scholar 

  16. Gerdil, R., Nature, 212, 922 (1966).

    Article  CAS  ADS  Google Scholar 

  17. Lucken, E. A. C., and Whitehead, M. A., J. Chem. Soc., 2459 (1961).

  18. Iredale, T., Nature, 177, 36 (1956).

    Article  CAS  ADS  Google Scholar 

  19. Meal, H. C., J. Amer. Chem. Soc., 74, 6121 (1952).

    Article  CAS  Google Scholar 

  20. Bray, P. J., and Barnes, R. G., J. Chem. Phys., 22, 1787 (1954); ibid., 27, 551 (1957).

    Article  CAS  ADS  Google Scholar 

  21. Das, T. P., and Hahn, E. L., Solid State Phys., suppl. 1, 18 (1958).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MACHMER, P. Empirical Correlation between the Molecular Electric Field Gradients and the Average Molecular Polarizabilities of some Halogen Compounds. Nature 217, 165–166 (1968). https://doi.org/10.1038/217165a0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/217165a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing