Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observations on the RNA Metabolism of Leukaemic Cell Cultures

Abstract

MORE than half the RNA synthesized in mammalian cells is ribosomal and transfer RNA. This RNA is rich in guanine (G) and cytosine (C) and is polymerized by a DNA-dependent RNA polymerase1,2. Conversely, the RNA synthesized in mammalian cells infected with cytocidal single-stranded RNA viruses, such as polio-viruses and EMC virus, is predominantly viral RNA. This RNA is rich in adenine (A) and uracil (U) and is polymerized by virus-induced, RNA-dependent RNA polymerase3–7. Cells infected with such viruses also show repression of the synthesis of GC-rich cellular RNA8,9. Little is known about the metabolism of RNA in mammalian cells infected with leukaemia viruses. The present study was undertaken to examine some gross characteristics of RNA synthesis in leukaemia cells from mice in which the leukaemias resulted from infection either with the Rauscher leukaemia virus or with a virus from radiation-induced myeloid leukaemia10. Recent investigations have shown that the nucleic acid of the Rauscher virus is single-stranded RNA with about 52 per cent total G + C and a low uridine content11,12. The nature of the nucleic acid of the radiation-induced myeloid leukaemia virus is not known.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yoshikawa-Kukada, M., Ann. Rep. Inst. Virus Res. Kyoto Univ., 7, 82 (1964).

    Google Scholar 

  2. Darnell, J. E., Penman, S., Scherrer, K., and Becker, Y., Cold Spring Harbor Symp. Quant. Biol., 27, 271 (1963).

    Google Scholar 

  3. Faulker, P., Martin, E. M., Sved, S., Valentine, R. C., and Work, T. S., Biochem. J., 80, 497 (1961).

    Google Scholar 

  4. Schaffer, F. L., Moore, H. F., and Schwerdt, C. E., Virology, 10, 530 (1960).

    Article  CAS  Google Scholar 

  5. Baltimore, D., and Franklin, R. M., Biochem. Biophys. Res. Commun., 9, 388 (1962).

    Article  CAS  Google Scholar 

  6. Baltimore, D., Eggers, H. J., Franklin, R. M., and Tamm, I., Proc. US Nat. Acad. Sci., 49, 843 (1963).

    Article  ADS  CAS  Google Scholar 

  7. Eason, R., and Smellie, R. M. S., J. Biol. Chem., 240, 2580 (1965).

    CAS  PubMed  Google Scholar 

  8. Holland, J. J., and Peterson, J. A., J. Mol. Biol., 8, 556 (1964).

    Article  CAS  Google Scholar 

  9. Martin, E. M., and Work, T. S., Biochem. J., 81, 514 (1961).

    Article  CAS  Google Scholar 

  10. Jenkins, V. K., and Upton, A. C., Cancer Res., 23, 1748 (1963).

    CAS  PubMed  Google Scholar 

  11. Duesberg, P. H., and Robinson, W. S., Proc. US Nat. Acad. Sci., 55, 219 (1966).

    Article  ADS  CAS  Google Scholar 

  12. Galibert, F., Berhard, C., Chennaille, Ph., and Boiron, M., Nature, 209, 680 (1966).

    Article  ADS  CAS  Google Scholar 

  13. Ginsburg, H., and Sachs, L., J. Nat. Cancer Inst., 27, 1153 (1961).

    CAS  PubMed  Google Scholar 

  14. Scherrer, K., and Darnell, J. E., Biochem. Biophys. Res. Commun., 7, 486 (1962).

    Article  CAS  Google Scholar 

  15. Tyndall, R. L., Jacobson, K. B., and Teeter, E., Biochim. Biophys. Acta, 87, 335 (1964).

    CAS  PubMed  Google Scholar 

  16. Tyndall, R. L., Jacobson, K. B., and Teeter, E., Biochim. Biophys. Acta, 108, 11 (1965).

    Article  CAS  Google Scholar 

  17. Reich, E., Franklin, R. M., Shatkin, A. J., and Tatum, E. L., Proc. US Nat. Acad. Sci., 48, 1238 (1962).

    Article  ADS  CAS  Google Scholar 

  18. Holland, J. J., Proc. US Nat. Acad. Sci., 50, 436 (1963).

    Article  ADS  CAS  Google Scholar 

  19. Tamaoki, T., and Mueller, G., Biochem. Biophys. Res. Commun., 11, 404 (1963).

    Article  CAS  Google Scholar 

  20. Rich, M., and Siegler, R., Accad. Nazionale Dei Lincei, 65, 69 (1963).

    Google Scholar 

  21. Scholtissek, C., Ratt, R., Hausen, Ph., Hausen, H., and Schafer, W., Cold Spring Harbor Symp. Quant. Biol., 27, 245 (1962).

    Article  CAS  Google Scholar 

  22. Muramatsu, M., and Busch, H., Cancer Res., 24, 1028 (1964).

    CAS  PubMed  Google Scholar 

  23. Dulbecco, R., Hartwell, L. H., and Vogt, M., Proc. US Nat. Acad. Sci., 53, 403 (1965).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

TYNDALL, R., TEETER, E. Observations on the RNA Metabolism of Leukaemic Cell Cultures. Nature 215, 79–80 (1967). https://doi.org/10.1038/215079a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/215079a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing