Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhanced Reactivity at Dislocations in Layer Structures

Abstract

THIS communication is concerned chiefly with the localized chemical reactivity of solids such as graphite, molybdenum sulphide and other substances which crystallize with layer structures and for which some information is available1 about their dislocation content. Most specimens of such solids are known to contain extremely high densities (for example 1013 cm−2 in graphite2) of basal dislocations which move freely through the layer planes even at low temperatures. But there is every indication3,4 that the presence of these glissile basal dislocations does not lead to enhanced reactivities of the solids. (It could be argued, however, that, for graphite at least, basal dislocations, owing to their ubiquity, contribute to the intrinsic reactivity of the solid.) This communication draws attention to the role of non-basal dislocations, the existence and influence of which have, until recently, tended to be overlooked.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Amelinckx, S., The Direct Observation of Dislocations (Academic Press, 1964).

    MATH  Google Scholar 

  2. Dawson, I. M., and Follett, E. A. C., Proc. Roy. Soc., A, 253, 390 (1959).

    Article  ADS  CAS  Google Scholar 

  3. Presland, A. E. B., and Hedley, J. A., J. Nuclear Mat., 10, 99 (1963).

    Article  ADS  CAS  Google Scholar 

  4. Thomas, J. M., in Chemistry and Physics of Carbon, 1 (edit. by Walker, jun., P. L.) (Edward Arnold, 1965).

    Google Scholar 

  5. Roscoe, C., and Thomas, J. M., Carbon, 4, 383 (1966).

    Article  CAS  Google Scholar 

  6. Reynolds, W. N., in Chemistry and Physics of Carbon, 2 (edit. by Walker, jun., P. L.) (Edward Arnold, 1966).

    Google Scholar 

  7. Hörl, E. M., J. App. Phys., 36, 253 (1965).

    Article  ADS  Google Scholar 

  8. Amelinckx, S., and Delavignette, P., J. Nuclear Mat., 5, 17 (1962).

    Article  ADS  Google Scholar 

  9. Hull, D., Introduction to Dislocations (Pergamon Press, 1965).

    Google Scholar 

  10. Roscoe, C., and Thomas, J. M., Proc. Roy. Soc., A, 297, 327 (1967).

    Article  Google Scholar 

  11. Patel, A. R., and Bahl, O. P., Z. Kristallog., 121, 5 (1965).

    Google Scholar 

  12. Fitzer, E., and Schlesinger, H., Carbon, 3, 247 (1965).

    Article  CAS  Google Scholar 

  13. Hennig, G. R., Science, 147, 733 (1965).

    Article  ADS  CAS  Google Scholar 

  14. Hennig, G. R., in Chemistry and Physics of Carbon, 2 (edit. by Walker, jun., P. L.) (Edward Arnold, 1966).

    Google Scholar 

  15. Weertman, J., and Weertman, J. A., Elementary Dislocation Theory (Macmillan, 1964).

    MATH  Google Scholar 

  16. Bell, R. L., and Cahn, R. W., Proc. Roy. Soc., A, 239, 494 (1957).

    Article  ADS  CAS  Google Scholar 

  17. Price, P. B., Electron Microscopy and Strengths of Crystals (Interscience, 1963).

    Google Scholar 

  18. Muguruma, J., Nature, 208, 180 (1965).

    Article  ADS  CAS  Google Scholar 

  19. Tompkins, F. C., Pure App. Chem., 9, 387 (1964).

    Article  CAS  Google Scholar 

  20. Roscoe, C., thesis, Univ. Wales (1966).

  21. Gilman, J. J., Trans. Amer. Inst. Min. (Metall.) Eng., 212, 310 (1958).

    CAS  Google Scholar 

  22. Rothstein, J., Phys. Rev., 95, 370 (1954).

    Article  ADS  CAS  Google Scholar 

  23. Arlman, E. J., J. Catal., 3, 89 (1964).

    Article  CAS  Google Scholar 

  24. Cossee, P., J. Catal., 3, 80 (1964).

    Article  CAS  Google Scholar 

  25. Frank, F. C., Acta Crystall., 14, 497 (1951).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

THOMAS, J., EVANS, E. Enhanced Reactivity at Dislocations in Layer Structures. Nature 214, 167–168 (1967). https://doi.org/10.1038/214167a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/214167a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing