Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ionic Balance in the Crustacea

Abstract

THE internal medium of the Crustacea varies in inorganic composition from species to species, but keeps at least a general resemblance to sea water. In one sense the composition is entirely determined by the environment and regulatory mechanisms of the species, but these mechanisms have presumably evolved so as to maintain the balance of ions close to an optimum for each physiological process. Although some of these conditions of optimum balance may vary between species, those that do not should reveal themselves through correlations among the levels of various ions. The aim here is to consider correlations among sodium, potassium and magnesium. There is known to be an inverse relationship between concentration of magnesium and activity in marine species caused, perhaps, by the depressant action of magnesium at the neuromuscular junction1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Robertson, J. D., J. Exp. Biol., 30, 277 (1953).

    CAS  Google Scholar 

  2. Robertson, J. D., Comp. Biochem. Physiol., 1, 183 (1960).

    Article  CAS  Google Scholar 

  3. Robertson, J. D., J. Exp. Biol., 26, 182 (1949).

    CAS  PubMed  Google Scholar 

  4. Bogucki, M., Arch. int. Physiol., 35, 197 (1932).

    CAS  Google Scholar 

  5. Parry, G., J. Exp. Biol., 30, 567 (1953).

    CAS  Google Scholar 

  6. Parry, G., J. Exp. Biol., 31, 601 (1954).

    CAS  Google Scholar 

  7. Bogucki, M., Arch. int. Physiol., 38, 172 (1934).

    CAS  Google Scholar 

  8. Schlatter, M. J., J. Cell. Comp. Physiol., 17, 259 (1941).

    Article  CAS  Google Scholar 

  9. McLennan, H., Z. vergl. Physiol., 37, 490 (1955).

    Article  Google Scholar 

  10. Cole, W. H., J. Gen. Physiol., 23, 575 (1940).

    Article  CAS  Google Scholar 

  11. Gross, W. J., Physiol. Zoöl., 36, 312 (1963).

    Article  CAS  Google Scholar 

  12. Bryan, G. W., J. Mar. Biol. Assoc. U.K., 45, 97 (1965).

    Article  CAS  Google Scholar 

  13. Green, J. W., Harsch, M., Barr, L., and Prosser, C. L., Biol. Bull., 116, 76 (1959).

    Article  CAS  Google Scholar 

  14. Gross, W. J., Biol. Bull., 121, 290 (1961).

    Article  Google Scholar 

  15. Prosser, C. L., Green, J. W., and Chow, T. J., Biol. Bull., 109, 99 (1955).

    Article  Google Scholar 

  16. Skou, J. C., Biochim. Biophys. Acta, 42, 6 (1960).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BURTON, R. Ionic Balance in the Crustacea. Nature 213, 812–813 (1967). https://doi.org/10.1038/213812a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/213812a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing