Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chromosomal Organization as a Genetic Basis of Cytodifferentiation in Multicellular Organisms

Abstract

THE genetic mechanisms in differentiative phenomena of bacterial cells have recently been elucidated in great detail by the work of Jacob and Monod1–4. However, the differentiation of cells in multicellular organisms differs in some respects from that observed in bacterial cells. The main difference is in the virtual irreversibility of the differentiation observed in metazoan cells; for example, hepatocytes never change into neurones and vice versa. This type of differentiation, that assures stable cell diversities in multicellular organisms, is apparently lacking among bacterial cells. It seems necessary to recognize this peculiar feature of the metazoan cells before we discuss the genetic mechanisms of differentiation in this system. So we designate this phenomenon of stable specialization of cells as ‘major differentiation’ of metazoan cells. On the other hand, the differentiated metazoan cells also exhibit transient modulations both in functional and structural aspects; for example, hepatocytes, after hepatectomy, change their resting state, proliferate vigorously and, after complete restoration, re-attain their former highly differentiated state. This phenomenon has often been referred to as transient de-differentiation of hepatocytes. But it is not the same as the loss of major differentiation, as the former is a completely reversible phenomenon, like the reactions of bacteria to inducer or represser substances. This type of differentiation also includes functional changes of cells. We therefore distinguish it as ‘minor differentiation’. Thus, in metazoan cells we find at least two different types of differentiation, ‘major differentiation’, which is virtually irreversible and determines cell specificity in certain tissues, and ‘minor differentiation’, which is usually reversible and related rather to functional states of the cell. The cell usually shows both types of differentiation at the same time. Cells can lose or gain the minor differentiation without changing the state of major differentiation; hepato-cytes, for example, keeping their hepatocytic specificity unchanged, can be either in a resting functional state or in a proliferating regenerative phase. These peculiar features of major and minor differentiation are the outstanding characteristics that distinguish the differentiation of metazoan cells from that of bacterial cells. They must be taken into account in considering the genetic mechanisms involved in the differentiation of multicellular organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jacob, F., and Monod, J., J. Mol. Biol., 2, 216 (1960).

    Article  Google Scholar 

  2. Jacob, F., and Monod, J., J. Mol. Biol., 3, 318 (1961).

    Article  CAS  Google Scholar 

  3. Monod, J., and Jacob, F., Cold Spr. Harb. Symp. Quant. Biol., 26, 389 (1961).

    Article  CAS  Google Scholar 

  4. Monod, J., Changeux, J. P., and Jacob, F., J. Mol. Biol., 6, 306 (1963).

    Article  CAS  Google Scholar 

  5. Fujita, S., and Takamoto, K., Nature, 200, 494 (1963).

    Article  ADS  CAS  Google Scholar 

  6. Sonneborn, T. M., Proc. U.S. Nat. Acad. Sci., 51, 915 (1964).

    Article  ADS  CAS  Google Scholar 

  7. Beermann, W., Cold Spr. Harb. Symp. Quant. Biol., 21, 217 (1956).

    Article  CAS  Google Scholar 

  8. Beermann, W., Developmental Cytology (The Donald Press; New York, 1959).

    Google Scholar 

  9. Fujita, S., Proc. Japan. Soc. Histochem. (in the press).

  10. Fujita, S., and Miyake, S., Symp. on Cellular Chemistry (Tokyo), 14, 275 (1964).

    Google Scholar 

  11. Pelling, C., Chromosoma, 15, 71 (1964).

    Article  CAS  Google Scholar 

  12. Keyl, H. G., and Pelling, C., Chromasoma, 14, 347 (1963).

    Article  Google Scholar 

  13. Plaut, W., J. Mol. Biol., 7, 632 (1963).

    Article  CAS  Google Scholar 

  14. Uesu, M., Kaku, H., Kojima, A., and Fujita, A., Kagaku (Tokyo), 33, 596 (1963).

    Google Scholar 

  15. Taylor, J. H., J. Biophys. Biochem. Cytol., 1, 455 (1960).

    Article  Google Scholar 

  16. Bonhoeffer, F., and Gierer, A., J. Mol. Biol., 7, 534 (1963).

    Article  CAS  Google Scholar 

  17. Cairns, J., J. Mol. Biol., 6, 208 (1963).

    Article  CAS  Google Scholar 

  18. Nagata, T., Proc. U.S. Nat. Acad. Sci., 49, 551 (1963).

    Article  ADS  CAS  Google Scholar 

  19. Yoshikawa, H., and Sueoka, N., Proc. U.S. Nat. Acad. Sci., 49, 559 (1963).

    Article  ADS  CAS  Google Scholar 

  20. Austin, C. R., and Amoroso, E. C., Exp. Cell Res., 13, 419 (1957).

    Article  CAS  Google Scholar 

  21. Glenister, T. W., Nature, 117, 1135 (1956).

    Article  ADS  Google Scholar 

  22. Park, W. W., J. Anat., 91, 369 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Barr, M., and Carr, D., Acta Cytol., 6, 34 (1962).

    CAS  PubMed  Google Scholar 

  24. Grumbach, M. M., and Morishima, A., Acta Cytol., 6, 46 (1962).

    CAS  PubMed  Google Scholar 

  25. Grumbach, M. M., Morishima, A., and Taylor, J. H., Proc. U.S. Nat. Acad. Sci., 49, 581 (1963).

    Article  ADS  CAS  Google Scholar 

  26. Lyon, M. E., Nature, 190, 372 (1961).

    Article  ADS  CAS  Google Scholar 

  27. Lyon, M. E., Amer. J. Genet., 14, 135 (1962).

    CAS  Google Scholar 

  28. Ohno, S., and Makino, S., Lancet, i, 78 (1961).

  29. German, J., J. Cell. Biol., 20, 37 (1964).

    Article  CAS  Google Scholar 

  30. Mukherjee, B. B., and Sinha, A. K., Proc. U.S. Nat. Acad. Sci., 51, 252 (1964).

    Article  ADS  CAS  Google Scholar 

  31. Beutler, E., Yeh, M., and Fairbanks, V. F., Proc. U.S. Nat. Acad. Sci., 48, 9 (1962).

    Article  ADS  CAS  Google Scholar 

  32. Grumbach, M. M., Marks, P. A., and Morishima, A., Lancet, i, 1330 (1962).

  33. Hsu, T. C., Exp. Cell Res., 27, 332 (1962).

    Article  CAS  Google Scholar 

  34. Russel, L. B., Science, 133, 1795 (1961).

    Article  ADS  Google Scholar 

  35. Bender, M. A., and Prescott, D. M., Exp. Cell Res., 27, 221 (1962).

    Article  CAS  Google Scholar 

  36. Kikuchi, Y., and Sandberg, A. A., J. Clin. Invest., 42, 947 (1963).

    Google Scholar 

  37. Moorhead, P. S., and Defendi, V., J. Cell Biol., 16, 202 (1963).

    Article  CAS  Google Scholar 

  38. Stubblefield, E., and Mueller, G. C., Cancer Research, 22, 1091 (1962).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FUJITA, S. Chromosomal Organization as a Genetic Basis of Cytodifferentiation in Multicellular Organisms. Nature 206, 742–744 (1965). https://doi.org/10.1038/206742a0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/206742a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing