Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Graft-versus-Tumor Effects

Clinical-scale single-step CD4+ and CD8+ cell depletion for donor innate lymphocyte infusion (DILI)

Abstract

The ability to selectively deplete or enrich cells of specific phenotype by immunomagnetic selection to reduce the risk of GVHD holds significant promise for application in adoptive immunotherapy. Current clinical-scale approaches for T-cell depletion (e.g., CD34+ selection, CD3+ depletion), usually deplete γδ T cells, which may be advantageous in mediating graft-versus-tumor (GVT) effects and augmenting the innate immune response against infections. Here, we present a new method for depletion of T cells with potential GVHD reactivity by using a single-step immunomagnetic protocol, which efficiently depletes CD4+ and CD8+ αβ T cells under good manufacturing practice (GMP) conditions. Depletion from unstimulated leukapheresis products (n=6) containing up to 2.0 × 1010 cells showed high efficiency (mean log depletion of CD4+ cells: 4.12, CD8+ cells: 3.77). In addition, immunomagnetic CD4/CD8 depletion resulted in passive enrichment of innate lymphocytes (mean recovery of natural killer (NK) cells: 38%, γδ T cells: 50%). We demonstrated that γδ/NK cells preserved their proliferative and cytotoxic capacity and conclude that simultaneous large-scale depletion of CD4+/CD8+ T cells is feasible and can be performed under GMP conditions with high-depletion efficacy for αβ T cells and recovery of functionally intact innate effector lymphocytes for potential use in adoptive immunotherapy studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 1995; 86: 2041–2050.

    CAS  PubMed  Google Scholar 

  2. Collins Jr RH, Shpilberg O, Drobyski WR, Porter DL, Giralt S, Champlin R et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 1997; 15: 433–444.

    Article  PubMed  Google Scholar 

  3. Collins Jr RH, Goldstein S, Giralt S, Levine J, Porter D, Drobyski W et al. Donor leukocyte infusions in acute lymphocytic leukemia. Bone Marrow Transplant 2000; 26: 511–516.

    Article  PubMed  Google Scholar 

  4. Levine JE, Braun T, Penza SL, Beatty P, Cornetta K, Martino R et al. Prospective trial of chemotherapy and donor leukocyte infusions for relapse of advanced myeloid malignancies after allogeneic stem-cell transplantation. J Clin Oncol 2002; 20: 405–412.

    Article  CAS  PubMed  Google Scholar 

  5. Soiffer RJ, Alyea EP, Hochberg E, Wu C, Canning C, Parikh B et al. Randomized trial of CD8+ T-cell depletion in the prevention of graft-versus-host disease associated with donor lymphocyte infusion. Biol Blood Marrow Transplant 2002; 8: 625–632.

    Article  PubMed  Google Scholar 

  6. Dazzi F, Szydlo RM, Craddock C, Cross NC, Kaeda J, Chase A et al. Comparison of single-dose and escalating-dose regimens of donor lymphocyte infusion for relapse after allografting for chronic myeloid leukemia. Blood 2000; 95: 67–71.

    CAS  PubMed  Google Scholar 

  7. Guglielmi C, Arcese W, Dazzi F, Brand R, Bunjes D, Verdonck LF et al. Donor lymphocyte infusion for relapsed chronic myelogenous leukemia: prognostic relevance of the initial cell dose. Blood 2002; 100: 397–405.

    Article  CAS  PubMed  Google Scholar 

  8. Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA . Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 2002; 100: 1935–1947.

    Article  CAS  PubMed  Google Scholar 

  9. Born WK, Reardon CL, O'Brien RL . The function of gammadelta T cells in innate immunity. Curr Opin Immunol 2006; 18: 31–38.

    Article  CAS  PubMed  Google Scholar 

  10. Chen J, Niu H, He W, Ba D . Antitumor activity of expanded human tumor-infiltrating gammadelta T lymphocytes. Int Arch Allergy Immunol 2001; 125: 256–263.

    Article  CAS  PubMed  Google Scholar 

  11. Nanno M, Seki H, Mathioudakis G, Suzuki R, Itoh K, Ioannides CG et al. Gamma/delta T cell antigen receptors expressed on tumor-infiltrating lymphocytes from patients with solid tumors. Eur J Immunol 1992; 22: 679–687.

    Article  CAS  PubMed  Google Scholar 

  12. Poupot M, Pont F, Fournie JJ . Profiling blood lymphocyte interactions with cancer cells uncovers the innate reactivity of human gamma delta T cells to anaplastic large cell lymphoma. J Immunol 2005; 174: 1717–1722.

    Article  CAS  PubMed  Google Scholar 

  13. Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M . Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 2000; 96: 384–392.

    CAS  PubMed  Google Scholar 

  14. Kabelitz D, Wesch D, Pitters E, Zoller M . Characterization of tumor reactivity of human V gamma 9V delta 2 gamma delta T cells in vitro and in SCID mice in vivo. J Immunol 2004; 173: 6767–6776.

    Article  CAS  PubMed  Google Scholar 

  15. Choudhary A, Davodeau F, Moreau A, Peyrat MA, Bonneville M, Jotereau F . Selective lysis of autologous tumor cells by recurrent gamma delta tumor-infiltrating lymphocytes from renal carcinoma. J Immunol 1995; 154: 3932–3940.

    CAS  PubMed  Google Scholar 

  16. Bachelez H, Flageul B, Degos L, Boumsell L, Bensussan A . TCR gamma delta bearing T lymphocytes infiltrating human primary cutaneous melanomas. J Invest Dermatol 1992; 98: 369–374.

    Article  CAS  PubMed  Google Scholar 

  17. Zocchi MR, Ferrarini M, Rugarli C . Selective lysis of the autologous tumor by delta TCS1+ gamma/delta+ tumor-infiltrating lymphocytes from human lung carcinomas. Eur J Immunol 1990; 20: 2685–2689.

    Article  CAS  PubMed  Google Scholar 

  18. Thomas ML, Samant UC, Deshpande RK, Chiplunkar SV . Gammadelta T cells lyse autologous and allogenic oesophageal tumours: involvement of heat-shock proteins in the tumour cell lysis. Cancer Immunol Immunother 2000; 48: 653–659.

    Article  CAS  PubMed  Google Scholar 

  19. Watanabe N, Hizuta A, Tanaka N, Orita K . Localization of T cell receptor (TCR)-gamma delta+ T cells into human colorectal cancer: flow cytometric analysis of TCR-gamma delta expression in tumour-infiltrating lymphocytes. Clin Exp Immunol 1995; 102: 167–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilhelm M, Kunzmann V, Eckstein S, Reimer P, Weissinger F, Ruediger T et al. Gammadelta T cells for immune therapy of patients with lymphoid malignancies. Blood 2003; 102: 200–206.

    Article  CAS  PubMed  Google Scholar 

  21. Kunzmann V, Wilhelm M . Anti-lymphoma effect of gammadelta T cells. Leuk Lymphoma 2005; 46: 671–680.

    Article  CAS  PubMed  Google Scholar 

  22. Alyea EP, Canning C, Neuberg D, Daley H, Houde H, Giralt S et al. CD8+ cell depletion of donor lymphocyte infusions using CD8 monoclonal antibody-coated high-density microparticles (CD8-HDM) after allogeneic hematopoietic stem cell transplantation: a pilot study. Bone Marrow Transplant 2004; 34: 123–128.

    Article  CAS  PubMed  Google Scholar 

  23. Mackinnon S, Papadopoulos EB, Carabasi MH, Reich L, Collins NH, Boulad F et al. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood 1995; 86: 1261–1268.

    CAS  PubMed  Google Scholar 

  24. Giralt S, Hester J, Huh Y, Hirsch-Ginsberg C, Rondon G, Seong D et al. CD8-depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation. Blood 1995; 86: 4337–4343.

    CAS  PubMed  Google Scholar 

  25. Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 1997; 276: 1719–1724.

    Article  CAS  PubMed  Google Scholar 

  26. Champlin RE, Passweg JR, Zhang MJ, Rowlings PA, Pelz CJ, Atkinson KA et al. T-cell depletion of bone marrow transplants for leukemia from donors other than HLA-identical siblings: advantage of T-cell antibodies with narrow specificities. Blood 2000; 95: 3996–4003.

    CAS  PubMed  Google Scholar 

  27. Baron F, Frere P, Baudoux E, Schaaf-Lafontaine N, Fillet G, Beguin Y . Low incidence of acute graft-versus-host disease after non-myeloablative stem cell transplantation with CD8-depleted peripheral blood stem cells: an update. Haematologica 2003; 88: 835–837.

    PubMed  Google Scholar 

  28. Passweg JR, Stern M, Koehl U, Uharek L, Tichelli A . Use of natural killer cells in hematopoetic stem cell transplantation. Bone Marrow Transplant 2005; 35: 637–643.

    Article  CAS  PubMed  Google Scholar 

  29. Schilbach KE, Geiselhart A, Wessels JT, Niethammer D, Handgretinger R . Human gammadelta T lymphocytes exert natural and IL-2-induced cytotoxicity to neuroblastoma cells. J Immunother 2000; 23: 536–548.

    Article  CAS  PubMed  Google Scholar 

  30. Lamb Jr LS, Musk P, Ye Z, van RF, Geier SS, Tong JJ et al. Human gammadelta(+) T lymphocytes have in vitro graft vs leukemia activity in the absence of an allogeneic response. Bone Marrow Transplant 2001; 27: 601–606.

    Article  PubMed  Google Scholar 

  31. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005; 105: 3051–3057.

    Article  CAS  PubMed  Google Scholar 

  32. Drobyski WR, Majewski D, Hanson G . Graft-facilitating doses of ex vivo activated gammadelta T cells do not cause lethal murine graft-vs host disease. Biol Blood Marrow Transplant 1999; 5: 222–230.

    Article  CAS  PubMed  Google Scholar 

  33. Blazar BR, Taylor PA, Bluestone JA, Vallera DA . Murine gamma/delta-expressing T cells affect alloengraftment via the recognition of nonclassical major histocompatibility complex class Ib antigens. Blood 1996; 87: 4463–4472.

    CAS  PubMed  Google Scholar 

  34. Kawanishi Y, Passweg J, Drobyski WR, Rowlings P, Cook-Craig A, Casper J et al. Effect of T cell subset dose on outcome of T cell-depleted bone marrow transplantation. Bone Marrow Transplant 1997; 19: 1069–1077.

    Article  CAS  PubMed  Google Scholar 

  35. Nagai M, Azuma E, Qi J, Kumamoto T, Hiratake S, Hirayama M et al. Suppression of alloreactivity with gamma delta T-cells: relevance to increased gamma delta T-cells following bone marrow transplantation. Biomed Pharmacother 1998; 52: 137–142.

    Article  CAS  PubMed  Google Scholar 

  36. Godder KT, Henslee-Downey PJ, Mehta J, Park BS, Chiang KY, Abhyankar S et al. Long term disease-free survival in acute leukemia patients recovering with increased gammadelta T cells after partially mismatched related donor bone marrow transplantation. Bone Marrow Transplant 2007; 39: 751–757.

    Article  CAS  PubMed  Google Scholar 

  37. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100.

    Article  CAS  PubMed  Google Scholar 

  38. Schumm M, Handgretinger R, Pfeiffer M, Feuchtinger T, Kuci S, Faul C et al. Determination of residual T- and B-cell content after immunomagnetic depletion: proposal for flow cytometric analysis and results from 103 separations. Cytotherapy 2006; 8: 465–472.

    Article  CAS  PubMed  Google Scholar 

  39. Lang P, Pfeiffer M, Handgretinger R, Schumm M, Demirdelen B, Stanojevic S et al. Clinical scale isolation of T cell-depleted CD56+ donor lymphocytes in children. Bone Marrow Transplant 2002; 29: 497–502.

    Article  CAS  PubMed  Google Scholar 

  40. Passweg JR, Tichelli A, Meyer-Monard S, Heim D, Stern M, Kuhne T et al. Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia 2004; 18: 1835–1838.

    Article  CAS  PubMed  Google Scholar 

  41. King KM, Chan WS, Preti RA, Musk P, Lamb LS . Depletion of alphabeta+ T cells for cellular therapy of leukemia using gammadelta T cell enriched donor leukocyte infusion. Cytotherapy 2003; 5: 454 (abstract 78).

    Google Scholar 

  42. Otto M, Barfield RC, Iyengar R, Gatewood J, Muller I, Holladay MS et al. Human gammadelta T cells from G-CSF-mobilized donors retain strong tumoricidal activity and produce immunomodulatory cytokines after clinical-scale isolation. J Immunother 2005; 28: 73–78.

    Article  CAS  PubMed  Google Scholar 

  43. Barfield RC, Otto M, Houston J, Holladay M, Geiger T, Martin J et al. A one-step large-scale method for T- and B-cell depletion of mobilized PBSC for allogeneic transplantation. Cytotherapy 2004; 6: 1–6.

    Article  CAS  PubMed  Google Scholar 

  44. Jansen J, Hanks S, Akard LP, Thompson JM, Burns S, Chang Q et al. Immunomagnetic CD4+ and CD8+ cell depletion for patients at high risk for severe acute GVHD. Bone Marrow Transplant 1996; 17: 377–382.

    CAS  PubMed  Google Scholar 

  45. Martin PJ, Rowley SD, Anasetti C, Chauncey TR, Gooley T, Petersdorf EW et al. A phase I-II clinical trial to evaluate removal of CD4 cells and partial depletion of CD8 cells from donor marrow for HLA-mismatched unrelated recipients. Blood 1999; 94: 2192–2199.

    CAS  PubMed  Google Scholar 

  46. Herrera C, Torres A, Garcia-Castellano JM, Roman J, Martin C, Serrano J et al. Prevention of graft-versus-host disease in high risk patients by depletion of CD4+ and reduction of CD8+ lymphocytes in the marrow graft. Bone Marrow Transplant 1999; 23: 443–450.

    Article  CAS  PubMed  Google Scholar 

  47. Haas W, Pereira P, Tonegawa S . Gamma/delta cells. Annu Rev Immunol 1993; 11: 637–685.

    Article  CAS  PubMed  Google Scholar 

  48. Parnes JR . Molecular biology and function of CD4 and CD8. Adv Immunol 1989; 44: 265–311.

    Article  CAS  PubMed  Google Scholar 

  49. Addison EG, North J, Bakhsh I, Marden C, Haq S, Al-Sarraj S et al. Ligation of CD8alpha on human natural killer cells prevents activation-induced apoptosis and enhances cytolytic activity. Immunology 2005; 116: 354–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sakaguchi S . Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22: 531–562.

    Article  CAS  PubMed  Google Scholar 

  51. Wood KJ, Sakaguchi S . Regulatory T cells in transplantation tolerance. Nat Rev Immunol 2003; 3: 199–210.

    Article  CAS  PubMed  Google Scholar 

  52. Sutmuller RP, van Duivenvoorde LM, van EA, Schumacher TN, Wildenberg ME, Allison JP et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 2001; 194: 823–832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Young KJ, Kay LS, Phillips MJ, Zhang L . Antitumor activity mediated by double-negative T cells. Cancer Res 2003; 63: 8014–8021.

    CAS  PubMed  Google Scholar 

  54. Singh B, Read S, Asseman C, Malmstrom V, Mottet C, Stephens LA et al. Control of intestinal inflammation by regulatory T cells. Immunol Rev 2001; 182: 190–200.

    Article  CAS  PubMed  Google Scholar 

  55. Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S et al. CD4+ CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 2003; 9: 1144–1150.

    Article  CAS  PubMed  Google Scholar 

  56. Young KJ, DuTemple B, Phillips MJ, Zhang L . Inhibition of graft-versus-host disease by double-negative regulatory T cells. J Immunol 2003; 171: 134–141.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang ZX, Yang L, Young KJ, DuTemple B, Zhang L . Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat Med 2000; 6: 782–789.

    Article  CAS  PubMed  Google Scholar 

  58. Fischer K, Voelkl S, Heymann J, Przybylski GK, Mondal K, Laumer M et al. Isolation and characterization of human antigen-specific TCR alpha beta+ CD4(−)CD8− double-negative regulatory T cells. Blood 2005; 105: 2828–2835.

    Article  CAS  PubMed  Google Scholar 

  59. Priatel JJ, Utting O, Teh HS . TCR/self-antigen interactions drive double-negative T cell peripheral expansion and differentiation into suppressor cells. J Immunol 2001; 167: 6188–6194.

    Article  CAS  PubMed  Google Scholar 

  60. Chen W, Ford MS, Young KJ, Cybulsky MI, Zhang L . Role of double-negative regulatory T cells in long-term cardiac xenograft survival. J Immunol 2003; 170: 1846–1853.

    Article  CAS  PubMed  Google Scholar 

  61. Chen W, Zhou D, Torrealba JR, Waddell TK, Grant D, Zhang L . Donor lymphocyte infusion induces long-term donor-specific cardiac xenograft survival through activation of recipient double-negative regulatory T cells. J Immunol 2005; 175: 3409–3416.

    Article  CAS  PubMed  Google Scholar 

  62. Young KJ, DuTemple B, Zhang Z, Levy G, Zhang L . CD4(−)CD8(−) regulatory T cells implicated in preventing graft-versus-host and promoting graft-versus-leukemia responses. Transplant Proc 2001; 33: 1762–1763.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Rosemarie Ottohal, Martina Seubert, Heidi Heimlich, Elisabeth Holzmann, Manuela Stuewe and Hildegard Wessel for their expert technical assistance. This work was supported by Interdisziplinaeres Zentrum fuer Klinische Forschung Wuerzburg (IZKF, Grant no. 01KS9603) and Deutsche Forschungsgemeinschaft (DFG, Grant no. KFO 124/1-1 TP5). This work was presented in part at the ASH Meeting 2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Smetak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smetak, M., Kimmel, B., Birkmann, J. et al. Clinical-scale single-step CD4+ and CD8+ cell depletion for donor innate lymphocyte infusion (DILI). Bone Marrow Transplant 41, 643–650 (2008). https://doi.org/10.1038/sj.bmt.1705942

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705942

Keywords

This article is cited by

Search

Quick links