Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Does autologous transplantation directly increase the risk of secondary leukemia in lymphoma patients?

Abstract

Patients who undergo autologous stem cell transplantation (ASCT) for lymphoma have a significant risk of therapy-related acute myeloid leukemia and myelodysplasia (t-AML/MDS). Compared to that seen in other indications such as breast cancer, multiple myeloma or germ cell tumors, there is a substantially increased risk for t-AML/MDS following ASCT for lymphoma. This risk has largely been attributed to the extent of pre-transplant chemotherapy and radiation therapy. In many of the larger series to date, it has not been possible to directly implicate autologous transplantation itself as a risk factor for t-AML/MDS. Although pre-transplant therapy is certainly an important factor in the development of t-AML/MDS, specific components of the autologous transplantation procedure itself may also contribute to the risk of t-AML/MDS. Specifically, priming chemotherapy, total body irradiation, and the extensive cellular proliferation which occurs during engraftment may all play a role in the development of t-AML/MDS. Furthermore, there is an increasing body of evidence that certain inherited polymorphisms in genes governing drug metabolism, DNA repair and leukemogenesis may influence susceptibility to t-AML/MDS. In this paper, we review the evidence implicating the above risk factors for t-AML/MDS, present a potential mechanism for t-AML/MDS and propose interventions to reduce the rate of t-AML/MDS in lymphoma patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Darrington DL, Vose JM, Anderson JR, Bierman PJ, Bishop MR, Chan WC et al. Incidence and characterization of secondary myelodysplastic syndrome and acute myelogenous leukemia following high-dose chemoradiotherapy and autologous stem-cell transplantation for lymphoid malignancies. J Clin Oncol 1994; 12: 2527–2534.

    Article  CAS  PubMed  Google Scholar 

  2. Stone RM, Neuberg D, Soiffer R, Takvorian T, Whelan M, Rabinowe SN et al. Myelodysplastic syndrome as a late complication following autologous bone marrow transplantation for non-Hodgkin's lymphoma. J Clin Oncol 1994; 12: 2535–2542.

    CAS  PubMed  Google Scholar 

  3. Friedberg JW, Neuberg D, Stone RM, Alyea E, Jallow H, LaCasce A et al. Outcome in patients with myelodysplastic syndrome after autologous bone marrow transplantation for non-Hodgkin's lymphoma. J Clin Oncol 1999; 17: 3128–3135.

    CAS  PubMed  Google Scholar 

  4. Brown JR, Yeckes H, Friedberg JW, Neuberg D, Kim H, Nadler LM et al. Increasing incidence of late second malignancies after conditioning with cyclophosphamide and total-body irradiation and autologous bone marrow transplantation for non-Hodgkin's lymphoma. J Clin Oncol 2005; 23: 2208–2214.

    CAS  PubMed  Google Scholar 

  5. Miller JS, Arthur DC, Litz CE, Neglia JP, Miller WJ, Weisdorf DJ . Myelodysplastic syndrome after autologous bone marrow transplantation: an additional late complication of curative cancer therapy. Blood 1994; 83: 3780–3786.

    CAS  PubMed  Google Scholar 

  6. Bhatia S, Ramsay NK, Steinbuch M, Dusenbery KE, Shapiro RS, Weisdorf DJ et al. Malignant neoplasms following bone marrow transplantation. Blood 1996; 87: 3633–3639.

    CAS  PubMed  Google Scholar 

  7. Traweek ST, Slovak ML, Nademanee AP, Brynes RK, Niland JC, Forman SJ . Clonal karyotypic hematopoietic cell abnormalities occurring after autologous bone marrow transplantation for Hodgkin's disease and non-Hodgkin's lymphoma. Blood 1994; 84: 957–963.

    CAS  PubMed  Google Scholar 

  8. Krishnan A, Bhatia S, Slovak ML, Arber DA, Niland JC, Nademanee A et al. Predictors of therapy-related leukemia and myelodysplasia following autologous transplantation for lymphoma: an assessment of risk factors. Blood 2000; 95: 1588–1593.

    CAS  PubMed  Google Scholar 

  9. Wheeler C, Khurshid A, Ibrahim J, Elias A, Mauch P, Ault K et al. Incidence of post transplant myelodysplasia/acute leukemia in non-Hodgkin's lymphoma patients compared with Hodgkin's disease patients undergoing autologous transplantation following cyclophosphamide, carmustine, and etoposide (CBV). Leuk Lymphoma 2001; 40: 499–509.

    Article  CAS  PubMed  Google Scholar 

  10. Taylor PR, Jackson GH, Lennard AL, Hamilton PJ, Proctor SJ . Low incidence of myelodysplastic syndrome following transplantation using autologous non-cryopreserved bone marrow. Leukemia 1997; 11: 1650–1653.

    CAS  PubMed  Google Scholar 

  11. Andre M, Henry-Amar M, Blaise D, Colombat P, Fleury J, Milpied N et al. Treatment-related deaths and second cancer risk after autologous stem-cell transplantation for Hodgkin's disease. Blood 1998; 92: 1933–1940.

    CAS  PubMed  Google Scholar 

  12. Milligan DW, Ruiz De Elvira MC, Kolb HJ, Goldstone AH, Meloni G, Rohatiner AZ et al. Secondary leukaemia and myelodysplasia after autografting for lymphoma: results from the EBMT. EBMT Lymphoma and Late Effects Working Parties. European Group for Blood and Marrow Transplantation. Br J Haematol 1999; 106: 1020–1026.

    Article  CAS  PubMed  Google Scholar 

  13. Harrison CN, Gregory W, Hudson GV, Devereux S, Goldstone AH, Hancock B et al. High-dose BEAM chemotherapy with autologous haemopoietic stem cell transplantation for Hodgkin's disease is unlikely to be associated with a major increased risk of secondary MDS/AML. Br J Cancer 1999; 81: 476–483.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Micallef IN, Lillington DM, Apostolidis J, Amess JA, Neat M, Matthews J et al. Therapy-related myelodysplasia and secondary acute myelogenous leukemia after high-dose therapy with autologous hematopoietic progenitor-cell support for lymphoid malignancies. J Clin Oncol 2000; 18: 947–955.

    CAS  PubMed  Google Scholar 

  15. Park S, Brice P, Noguerra ME, Simon D, Rousselot P, Kerneis Y et al. Myelodysplasias and leukemias after autologous stem cell transplantation for lymphoid malignancies. Bone Marrow Transplant 2000; 26: 321–326.

    CAS  PubMed  Google Scholar 

  16. Sureda A, Arranz R, Iriondo A, Carreras E, Lahuerta JJ, Garcia-Conde J et al. Autologous stem-cell transplantation for Hodgkin's disease: results and prognostic factors in 494 patients from the Grupo Espanol de Linfomas/Transplante Autologo de Medula Osea Spanish Cooperative Group. J Clin Oncol 2001; 19: 1395–1404.

    CAS  PubMed  Google Scholar 

  17. Hosing C, Munsell M, Yazji S, Andersson B, Couriel D, de Lima M et al. Risk of therapy-related myelodysplastic syndrome/acute leukemia following high-dose therapy and autologous bone marrow transplantation for non-Hodgkin's lymphoma. Ann Oncol 2002; 13: 450–459.

    CAS  PubMed  Google Scholar 

  18. Sevilla J, Rodriguez A, Hernandez-Maraver D, de Bustos G, Aguado J, Ojeda E et al. Secondary acute myeloid leukemia and myelodysplasia after autologous peripheral blood progenitor cell transplantation. Ann Hematol 2002; 81: 11–15.

    CAS  PubMed  Google Scholar 

  19. Beauchamp-Nicoud A, Feneux D, Bayle C, Bernheim A, Leonard C, Koscielny S et al. Therapy-related myelodysplasia and/or acute myeloid leukaemia after autologous haematopoietic progenitor cell transplantation in a prospective single centre cohort of 221 patients. Br J Haematol 2003; 122: 109–117.

    PubMed  Google Scholar 

  20. Metayer C, Curtis RE, Vose J, Sobocinski KA, Horowitz MM, Bhatia S et al. Myelodysplastic syndrome and acute myeloid leukemia after autotransplantation for lymphoma: a multicenter case–control study. Blood 2003; 101: 2015–2023.

    CAS  PubMed  Google Scholar 

  21. Schouten HC, Qian W, Kvaloy S, Porcellini A, Hagberg H, Johnson HE et al. High-dose therapy improves progression-free survival and survival in relapsed follicular non-Hodgkin's lymphoma: results from the randomized European CUP trial. J Clin Oncol 2003; 21: 3918–3927.

    CAS  PubMed  Google Scholar 

  22. Lenz G, Dreyling M, Schiegnitz E, Haferlach T, Hasford J, Unterhalt M et al. Moderate increase of secondary hematologic malignancies after myeloablative radiochemotherapy and autologous stem-cell transplantation in patients with indolent lymphoma: results of a prospective randomized trial of the German Low Grade Lymphoma Study Group. J Clin Oncol 2004; 22: 4926–4933.

    PubMed  Google Scholar 

  23. Deconinck E, Foussard C, Milpied N, Bertrand P, Michenet P, Cornillet-LeFebvre P et al. High-dose therapy followed by autologous purged stem-cell transplantation and doxorubicin-based chemotherapy in patients with advanced follicular lymphoma: a randomized multicenter study by GOELAMS. Blood 2005; 105: 3817–3823.

    CAS  PubMed  Google Scholar 

  24. Forrest DL, Hogge DE, Nevill TJ, Nantel SH, Barnett MJ, Shepherd JD et al. High-dose therapy and autologous hematopoietic stem-cell transplantation does not increase the risk of second neoplasms for patients with Hodgkin's lymphoma: a comparison of conventional therapy alone versus conventional therapy followed by autologous hematopoietic stem-cell transplantation. J Clin Oncol 2005; 23: 7994–8002.

    CAS  PubMed  Google Scholar 

  25. Kalaycio M, Rybicki L, Pohlman B, Sobecks R, Andresen S, Kuczkowski E et al. Risk factors before autologous stem-cell transplantation for lymphoma predict for secondary myelodysplasia and acute myelogenous leukemia. J Clin Oncol 2006; 24: 3604–3610.

    PubMed  Google Scholar 

  26. Sebban C, Mounier N, Brousse N, Belanger C, Brice P, Haioun C et al. Standard chemotherapy with interferon compared to CHOP followed by high-dose therapy with autologous stem cell transplantation in untreated patients with advanced follicular lymphoma: the GELF-94 randomized study from the GELA. Blood 2006; 108: 2540–2544.

    CAS  PubMed  Google Scholar 

  27. Ladetto M, Vallet S, Benedetti F, Vitolo U, Martelli M, Callea V et al. Prolonged survival and low incidence of late toxic sequelae in advanced follicular lymphoma treated with a TBI-free autografting program: updated results of the multicenter consecutive GITMO trial. Leukemia 2006; 20: 1840–1847.

    CAS  PubMed  Google Scholar 

  28. Larson RA, Le Beau MM . Therapy-related myeloid leukaemia: a model for leukemogenesis in humans. Chem Biol Interact 2005; 153–154: 187–195.

    PubMed  Google Scholar 

  29. Schoch C, Kern W, Schnittger S, Hiddemann W, Haferlach T . Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML): an analysis of 93 patients with t-AML in comparison to 1091 patients with de novo AML. Leukemia 2004; 18: 120–125.

    CAS  PubMed  Google Scholar 

  30. Leone G, Mele L, Pulsoni A, Equitani F, Pagano L . The incidence of secondary leukemias. Haematologica 1999; 84: 937–945.

    CAS  PubMed  Google Scholar 

  31. Bloomfield CD, Archer KJ, Mrozek K, Lillington DM, Kaneko Y, Head DR et al. 11q23 balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer 2002; 33: 362–378.

    PubMed  Google Scholar 

  32. Davies SM . Therapy-related leukemia associated with alkylating agents. Med Pediatr Oncol 2001; 36: 536–540.

    CAS  PubMed  Google Scholar 

  33. Josting A, Wiedenmann S, Franklin J, May M, Sieber M, Wolf J et al. Secondary myeloid leukemia and myelodysplastic syndromes in patients treated for Hodgkin's disease: a report from the German Hodgkin's Lymphoma Study Group. J Clin Oncol 2003; 21: 3440–3446.

    PubMed  Google Scholar 

  34. Witherspoon RP, Deeg HJ, Storer B, Anasetti C, Storb R, Appelbaum FR . Hematopoietic stem-cell transplantation for treatment-related leukemia or myelodysplasia. J Clin Oncol 2001; 19: 2134–2141.

    CAS  PubMed  Google Scholar 

  35. Yakoub-Agha I, de La Salmoniere P, Ribaud P, Sutton L, Wattel E, Kuentz M et al. Allogeneic bone marrow transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia: a long-term study of 70 patients-report of the French society of bone marrow transplantation. J Clin Oncol 2000; 18: 963–971.

    CAS  PubMed  Google Scholar 

  36. Delwail V, Jais JP, Colonna P, Andrieu JM . Fifteen-year secondary leukaemia risk observed in 761 patients with Hodgkin's disease prospectively treated by MOPP or ABVD chemotherapy plus high-dose irradiation. Br J Haematol 2002; 118: 189–194.

    CAS  PubMed  Google Scholar 

  37. Schonfeld SJ, Gilbert ES, Dores GM, Lynch CF, Hodgson DC, Hall P et al. Acute myeloid leukemia following Hodgkin lymphoma: a population-based study of 35,511 patients. J Natl Cancer Inst 2006; 98: 215–218.

    PubMed  Google Scholar 

  38. Andrieu JM, Ifrah N, Payen C, Fermanian J, Coscas Y, Flandrin G . Increased risk of secondary acute nonlymphocytic leukemia after extended-field radiation therapy combined with MOPP chemotherapy for Hodgkin's disease. J Clin Oncol 1990; 8: 1148–1154.

    CAS  PubMed  Google Scholar 

  39. Mauch PM, Kalish LA, Marcus KC, Coleman CN, Shulman LN, Krill E et al. Second malignancies after treatment for laparotomy staged IA-IIIB Hodgkin's disease: long-term analysis of risk factors and outcome. Blood 1996; 87: 3625–3632.

    CAS  PubMed  Google Scholar 

  40. Munker R, Grutzner S, Hiller E, Aydemir U, Enne W, Dietzfelbinger H et al. Second malignancies after Hodgkin's disease: the Munich experience. Ann Hematol 1999; 78: 544–554.

    CAS  PubMed  Google Scholar 

  41. Pedersen-Bjergaard J, Specht L, Larsen SO, Ersboll J, Struck J, Hansen MM et al. Risk of therapy-related leukaemia and preleukaemia after Hodgkin's disease. Relation to age, cumulative dose of alkylating agents, and time from chemotherapy. Lancet 1987; 2: 83–88.

    CAS  PubMed  Google Scholar 

  42. Swerdlow AJ, Douglas AJ, Vaughan Hudson G, Vaughan Hudson B, MacLennan KA . Risk of second primary cancer after Hodgkin's disease in patients in the British National Lymphoma Investigation: relationships to host factors, histology and stage of Hodgkin's disease, and splenectomy. Br J Cancer 1993; 68: 1006–1011.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tucker MA, Coleman CN, Cox RS, Varghese A, Rosenberg SA . Risk of second cancers after treatment for Hodgkin's disease. N Engl J Med 1988; 318: 76–81.

    CAS  PubMed  Google Scholar 

  44. van Leeuwen FE, Chorus AM, van den Belt-Dusebout AW, Hagenbeek A, Noyon R, van Kerkhoff EH et al. Leukemia risk following Hodgkin's disease: relation to cumulative dose of alkylating agents, treatment with teniposide combinations, number of episodes of chemotherapy, and bone marrow damage. J Clin Oncol 1994; 12: 1063–1073.

    CAS  PubMed  Google Scholar 

  45. Travis LB, Curtis RE, Stovall M, Holowaty EJ, van Leeuwen FE, Glimelius B et al. Risk of leukemia following treatment for non-Hodgkin's lymphoma. J Natl Cancer Inst 1994; 86: 1450–1457.

    CAS  PubMed  Google Scholar 

  46. Andre M, Mounier N, Leleu X, Sonet A, Brice P, Henry-Amar M et al. Second cancers and late toxicities after treatment of aggressive non-Hodgkin lymphoma with the ACVBP regimen: a GELA cohort study on 2837 patients. Blood 2004; 103: 1222–1228.

    CAS  PubMed  Google Scholar 

  47. Mudie NY, Swerdlow AJ, Higgins CD, Smith P, Qiao Z, Hancock BW et al. Risk of second malignancy after non-Hodgkin's lymphoma: a British Cohort Study. J Clin Oncol 2006; 24: 1568–1574.

    PubMed  Google Scholar 

  48. Armitage JO, Carbone PP, Connors JM, Levine A, Bennett JM, Kroll S . Treatment-related myelodysplasia and acute leukemia in non-Hodgkin's lymphoma patients. J Clin Oncol 2003; 21: 897–906.

    PubMed  Google Scholar 

  49. Kroger N, Damon L, Zander AR, Wandt H, Derigs G, Ferrante P et al. Secondary acute leukemia following mitoxantrone-based high-dose chemotherapy for primary breast cancer patients. Bone Marrow Transplant 2003; 32: 1153–1157.

    CAS  PubMed  Google Scholar 

  50. Rodenhuis S, Bontenbal M, Beex LV, Wagstaff J, Richel DJ, Nooij MA et al. High-dose chemotherapy with hematopoietic stem-cell rescue for high-risk breast cancer. N Engl J Med 2003; 349: 7–16.

    CAS  PubMed  Google Scholar 

  51. Govindarajan R, Jagannath S, Flick JT, Vesole DH, Sawyer J, Barlogie B et al. Preceding standard therapy is the likely cause of MDS after autotransplants for multiple myeloma. Br J Haematol 1996; 95: 349–353.

    CAS  PubMed  Google Scholar 

  52. Kollmannsberger C, Hartmann JT, Kanz L, Bokemeyer C . Therapy-related malignancies following treatment of germ cell cancer. Int J Cancer 1999; 83: 860–863.

    CAS  PubMed  Google Scholar 

  53. Abruzzese E, Radford JE, Miller JS, Vredenburgh JJ, Rao PN, Pettenati MJ et al. Detection of abnormal pretransplant clones in progenitor cells of patients who developed myelodysplasia after autologous transplantation. Blood 1999; 94: 1814–1819.

    CAS  PubMed  Google Scholar 

  54. Lillington DM, Micallef IN, Carpenter E, Neat MJ, Amess JA, Matthews J et al. Detection of chromosome abnormalities pre-high-dose treatment in patients developing therapy-related myelodysplasia and secondary acute myelogenous leukemia after treatment for non-Hodgkin's lymphoma. J Clin Oncol 2001; 19: 2472–2481.

    CAS  PubMed  Google Scholar 

  55. Mach-Pascual S, Legare RD, Lu D, Kroon M, Neuberg D, Tantravahi R et al. Predictive value of clonality assays in patients with non-Hodgkin's lymphoma undergoing autologous bone marrow transplant: a single study. Blood 1998; 91: 4496–4503.

    CAS  PubMed  Google Scholar 

  56. Sharpless NE, DePinho RA . Telomeres, stem cells, senescence, and cancer. J Clin Invest 2004; 113: 160–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bhatia R, Van Heijzen K, Palmer A, Komiya A, Slovak ML, Chang KL et al. Longitudinal assessment of hematopoietic abnormalities after autologous hematopoietic cell transplantation for lymphoma. J Clin Oncol 2005; 23: 6699–6711.

    PubMed  Google Scholar 

  58. Thornley I, Sutherland R, Wynn R, Nayar R, Sung L, Corpus G et al. Early hematopoietic reconstitution after clinical stem cell transplantation: evidence for stochastic stem cell behavior and limited acceleration in telomere loss. Blood 2002; 99: 2387–2396.

    CAS  PubMed  Google Scholar 

  59. Gisselbrecht C, Lepage E, Molina T, Quesnel B, Fillet G, Lederlin P et al. Shortened first-line high-dose chemotherapy for patients with poor-prognosis aggressive lymphoma. J Clin Oncol 2002; 20: 2472–2479.

    CAS  PubMed  Google Scholar 

  60. Haioun C, Lepage E, Gisselbrecht C, Salles G, Coiffier B, Brice P et al. Survival benefit of high-dose therapy in poor-risk aggressive non-Hodgkin's lymphoma: final analysis of the prospective LNH87-2 protocol – a groupe d'Etude des lymphomes de l'Adulte study. J Clin Oncol 2000; 18: 3025–3030.

    CAS  PubMed  Google Scholar 

  61. Kaiser U, Uebelacker I, Abel U, Birkmann J, Trumper L, Schmalenberg H et al. Randomized study to evaluate the use of high-dose therapy as part of primary treatment for ‘aggressive’ lymphoma. J Clin Oncol 2002; 20: 4413–4419.

    CAS  PubMed  Google Scholar 

  62. Martelli M, Gherlinzoni F, De Renzo A, Zinzani PL, De Vivo A, Cantonetti M et al. Early autologous stem-cell transplantation versus conventional chemotherapy as front-line therapy in high-risk, aggressive non-Hodgkin's lymphoma: an Italian multicenter randomized trial. J Clin Oncol 2003; 21: 1255–1262.

    PubMed  Google Scholar 

  63. Milpied N, Deconinck E, Gaillard F, Delwail V, Foussard C, Berthou C et al. Initial treatment of aggressive lymphoma with high-dose chemotherapy and autologous stem-cell support. N Engl J Med 2004; 350: 1287–1295.

    CAS  PubMed  Google Scholar 

  64. Santini G, Salvagno L, Leoni P, Chisesi T, De Souza C, Sertoli MR et al. VACOP-B versus VACOP-B plus autologous bone marrow transplantation for advanced diffuse non-Hodgkin's lymphoma: results of a prospective randomized trial by the non-Hodgkin's Lymphoma Cooperative Study Group. J Clin Oncol 1998; 16: 2796–2802.

    CAS  PubMed  Google Scholar 

  65. Vitolo U, Liberati AM, Cabras MG, Federico M, Angelucci E, Baldini L et al. High dose sequential chemotherapy with autologous transplantation versus dose-dense chemotherapy MegaCEOP as first line treatment in poor-prognosis diffuse large cell lymphoma: an ‘Intergruppo Italiano Linfomi’ randomized trial. Haematologica 2005; 90: 793–801.

    CAS  PubMed  Google Scholar 

  66. Philip T, Guglielmi C, Hagenbeek A, Somers R, Van der Lelie H, Bron D et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin's lymphoma. N Engl J Med 1995; 333: 1540–1545.

    CAS  PubMed  Google Scholar 

  67. Gilliland DG . Molecular genetics of human leukemias: new insights into therapy. Semin Hematol 2002; 39: 6–11.

    CAS  PubMed  Google Scholar 

  68. Marcucci G, Mrozek K, Bloomfield CD . Molecular heterogeneity and prognostic biomarkers in adults with acute myeloid leukemia and normal cytogenetics. Curr Opin Hematol 2005; 12: 68–75.

    CAS  PubMed  Google Scholar 

  69. Smith ML, Cavenagh JD, Lister TA, Fitzgibbon J . Mutation of CEBPA in familial acute myeloid leukemia. N Engl J Med 2004; 351: 2403–2407.

    CAS  PubMed  Google Scholar 

  70. Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999; 23: 166–175.

    CAS  PubMed  Google Scholar 

  71. Side L, Taylor B, Cayouette M, Conner E, Thompson P, Luce M et al. Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N Engl J Med 1997; 336: 1713–1720.

    CAS  PubMed  Google Scholar 

  72. Hisada M, Garber JE, Fung CY, Fraumeni Jr JF, Li FP . Multiple primary cancers in families with Li–Fraumeni syndrome. J Natl Cancer Inst 1998; 90: 606–611.

    CAS  PubMed  Google Scholar 

  73. Papageorgio C, Seiter K, Feldman EJ . Therapy-related myelodysplastic syndrome in adults with neurofibromatosis. Leuk Lymphoma 1999; 32: 605–608.

    CAS  PubMed  Google Scholar 

  74. Knoche E, McLeod HL, Graubert TA . Pharmacogenetics of alkylator-associated acute myeloid leukemia. Pharmacogenomics 2006; 7: 719–729.

    CAS  PubMed  Google Scholar 

  75. Schnittger S, Kohl TM, Leopold N, Schoch C, Wichmann HE, Kern W et al. D324N single-nucleotide polymorphism in the FLT3 gene is associated with higher risk of myeloid leukemias. Genes Chromosomes Cancer 2006; 45: 332–337.

    CAS  PubMed  Google Scholar 

  76. Wolfler A, Erkeland SJ, Bodner C, Valkhof M, Renner W, Leitner C et al. A functional single-nucleotide polymorphism of the G-CSF receptor gene predisposes individuals to high-risk myelodysplastic syndrome. Blood 2005; 105: 3731–3736.

    PubMed  Google Scholar 

  77. Christiansen DH, Andersen MK, Desta F, Pedersen-Bjergaard J . Mutations of genes in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2005; 19: 2232–2240.

    CAS  PubMed  Google Scholar 

  78. Harada H, Harada Y, Niimi H, Kyo T, Kimura A, Inaba T . High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood 2004; 103: 2316–2324.

    CAS  PubMed  Google Scholar 

  79. Christiansen DH, Andersen MK, Pedersen-Bjergaard J . Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol 2001; 19: 1405–1413.

    CAS  PubMed  Google Scholar 

  80. Side LE, Curtiss NP, Teel K, Kratz C, Wang PW, Larson RA et al. RAS, FLT3, and TP53 mutations in therapy-related myeloid malignancies with abnormalities of chromosomes 5 and 7. Genes Chromosomes Cancer 2004; 39: 217–223.

    CAS  PubMed  Google Scholar 

  81. Felix CA, Walker AH, Lange BJ, Williams TM, Winick NJ, Cheung NK et al. Association of CYP3A4 genotype with treatment-related leukemia. Proc Natl Acad Sci USA 1998; 95: 13176–13181.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Rund D, Krichevsky S, Bar-Cohen S, Goldschmidt N, Kedmi M, Malik E et al. Therapy-related leukemia: clinical characteristics and analysis of new molecular risk factors in 96 adult patients. Leukemia 2005; 19: 1919–1928.

    CAS  PubMed  Google Scholar 

  83. Roddam PL, Rollinson S, Kane E, Roman E, Moorman A, Cartwright R et al. Poor metabolizers at the cytochrome P450 2D6 and 2C19 loci are at increased risk of developing adult acute leukaemia. Pharmacogenetics 2000; 10: 605–615.

    CAS  PubMed  Google Scholar 

  84. Allan JM, Wild CP, Rollinson S, Willett EV, Moorman AV, Dovey GJ et al. Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc Natl Acad Sci USA 2001; 98: 11592–11597.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Naoe T, Takeyama K, Yokozawa T, Kiyoi H, Seto M, Uike N et al. Analysis of genetic polymorphism in NQO1, GST-M1, GST-T1, and CYP3A4 in 469 Japanese patients with therapy-related leukemia/myelodysplastic syndrome and de novo acute myeloid leukemia. Clin Cancer Res 2000; 6: 4091–4095.

    CAS  PubMed  Google Scholar 

  86. Larson RA, Wang Y, Banerjee M, Wiemels J, Hartford C, Le Beau MM et al. Prevalence of the inactivating 609C → T polymorphism in the NAD(P)H:quinone oxidoreductase (NQO1) gene in patients with primary and therapy-related myeloid leukemia. Blood 1999; 94: 803–807.

    CAS  PubMed  Google Scholar 

  87. Allan JM, Smith AG, Wheatley K, Hills RK, Travis LB, Hill DA et al. Genetic variation in XPD predicts treatment outcome and risk of acute myeloid leukemia following chemotherapy. Blood 2004; 104: 3872–3877.

    CAS  PubMed  Google Scholar 

  88. Worrillow LJ, Travis LB, Smith AG, Rollinson S, Smith AJ, Wild CP et al. An intron splice acceptor polymorphism in hMSH2 and risk of leukemia after treatment with chemotherapeutic alkylating agents. Clin Cancer Res 2003; 9: 3012–3020.

    CAS  PubMed  Google Scholar 

  89. Seedhouse C, Bainton R, Lewis M, Harding A, Russell N, Das-Gupta E . The genotype distribution of the XRCC1 gene indicates a role for base excision repair in the development of therapy-related acute myeloblastic leukemia. Blood 2002; 100: 3761–3766.

    CAS  PubMed  Google Scholar 

  90. Roddam PL, Allan JM, Rollinson S, Smith AG, Willett EV, Swirsky D et al. Poor metabolizer status at the cytochrome P450 2C9 and 2D6 loci does not modulate susceptibility to therapy-related acute myeloid leukaemia. Br J Haematol 2003; 121: 192–194.

    CAS  PubMed  Google Scholar 

  91. Ye Z, Song H . Glutathione s-transferase polymorphisms (GSTM1, GSTP1 and GSTT1) and the risk of acute leukaemia: a systematic review and meta-analysis. Eur J Cancer 2005; 41: 980–989.

    CAS  PubMed  Google Scholar 

  92. Fenske TS, McMahon C, Edwin D, Jarvis JC, Cheverud JM, Minn M et al. Identification of candidate alkylator-induced cancer susceptibility genes by whole genome scanning in mice. Cancer Res 2006; 66: 5029–5038.

    CAS  PubMed  Google Scholar 

  93. Jerusalem G, Hustinx R, Beguin Y, Fillet G . Evaluation of therapy for lymphoma. Semin Nucl Med 2005; 35: 186–196.

    PubMed  Google Scholar 

  94. Sehn LH, Chhanabhai M, Fitzgeral C, Gill K, Hoskins P, Klasa R et al. Revised international prognostic index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma (DLBCL) treated with rituximab and CHOP (R-CHOP). Blood 2005; 106: 492 (abstract).

    Google Scholar 

  95. Lossos IS, Morgensztern D . Prognostic biomarkers in diffuse large B-cell lymphoma. J Clin Oncol 2006; 24: 995–1007.

    CAS  PubMed  Google Scholar 

  96. Crump M, Baetz T, Couban S, Belch A, Marcellus D, Howson-Jan K et al. Gemcitabine, dexamethasone, and cisplatin in patients with recurrent or refractory aggressive histology B-cell non-Hodgkin lymphoma: a Phase II study by the National Cancer Institute of Canada Clinical Trials Group (NCIC-CTG). Cancer 2004; 101: 1835–1842.

    CAS  PubMed  Google Scholar 

  97. Baetz T, Belch A, Couban S, Imrie K, Yau J, Myers R et al. Gemcitabine, dexamethasone and cisplatin is an active and non-toxic chemotherapy regimen in relapsed or refractory Hodgkin's disease: a phase II study by the National Cancer Institute of Canada Clinical Trials Group. Ann Oncol 2003; 14: 1762–1767.

    CAS  PubMed  Google Scholar 

  98. Ng M, Waters J, Cunningham D, Chau I, Horwich A, Hill M et al. Gemcitabine, cisplatin and methylprednisolone (GEM-P) is an effective salvage regimen in patients with relapsed and refractory lymphoma. Br J Cancer 2005; 92: 1352–1357.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institutes of Health (P01 CA101937), the Barnes-Jewish Hospital Foundation, and the Medical College of Wisconsin Clinical Research Scholars Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T S Fenske.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hake, C., Graubert, T. & Fenske, T. Does autologous transplantation directly increase the risk of secondary leukemia in lymphoma patients?. Bone Marrow Transplant 39, 59–70 (2007). https://doi.org/10.1038/sj.bmt.1705547

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705547

Keywords

This article is cited by

Search

Quick links