Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pyruvate Metabolism in Saccharomyces cerevisiæ

Abstract

IT is generally assumed that Saccharomyces cerevisiæ (baker's yeast) can metabolize pyruvate: (a) by simple decarboxylation, a reaction not requiring oxygen, catalysed by carboxylase1, and (b) by oxidation, as described by Lieben2 and Meyerhof3, an oxygen-requiring reaction the precise mechanism of which is not known. In this communication experiments are briefly described which provide a general explanation of the mechanism of pyruvate aerobic oxidation by yeast and determine the role of carboxylase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Neuberg, C., and Simon, E., Ergeb. Enzymforsch., 2, 118 (1933).

    CAS  Google Scholar 

  2. Lieben, F., Biochem. Z., 135, 240 (1923).

    Google Scholar 

  3. Meyerhof, O., Biochem. Z., 162, 43 (1925).

    CAS  Google Scholar 

  4. Stoppani, A. O. M., Nature, 164, 1096 (1949).

    Article  ADS  CAS  Google Scholar 

  5. Umbreit, W. W., Burris, R. H., and Stauffer, J. F., “Manometric Techniques” (Burgess Publishing Co., Minneapolis, Minn.).

  6. Friedemann, T. E., and Haugen, G. E., J. Biol. Chem., 147, 415 (1943).

    CAS  Google Scholar 

  7. Straub, B. F., Z. physiol. Chem., 244, 105 (1936).

    Article  Google Scholar 

  8. Hansen, A., “Jörgensen's Micro-organisms and Fermentation”, 354 (C. Griffin and Co., Ltd., London, 1948).

    Google Scholar 

  9. Smythe, C. V., J. Biol. Chem., 125, 635 (1938).

    CAS  Google Scholar 

  10. Banga, I., Ochoa, S., and Peters, R. A., Biochem. J., 33, 1980 (1939).

    Article  CAS  Google Scholar 

  11. Conway, E. J., and Downey, M., Biochem. J., 47, 347 (1950).

    Article  CAS  Google Scholar 

  12. Brandt, K. M., Acta physiol. Scand., 10, Supp. XXX (1945).

  13. Cf. Wood, H. G., and Lorber, V., “Ann. Rev. Biochem.”, 18, 299 (1949).

    Article  CAS  Google Scholar 

  14. Loomis, W. F., and Lipmann, F., J. Biol. Chem., 173, 807 (1948). Cross, R. J., Taggart, J. V., Covo, G. A., and Green, D. E., J. Biol. Chem., 177, 655 (1949).

    CAS  Google Scholar 

  15. Green, D. E., Herbert, D., and Subrahmanyan, V., J. Biol. Chem., 138, 237 (1941).

    Google Scholar 

  16. Stoppani, A. O. M., Proc. Fifth International Congress of Microbiology (Rio de Janeiro, 1950).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

STOPPANI, A. Pyruvate Metabolism in Saccharomyces cerevisiæ. Nature 167, 653–654 (1951). https://doi.org/10.1038/167653b0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/167653b0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing