Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An Electrical Hypothesis of Synaptic and Neuromuscular Transmission

Abstract

SINCE 1933 the transmission of impulses across synaptic or neuromuscular junctions (henceforth called junctional transmission) has been the occasion of a controversy1. The electrical hypothesis has had the grave defect that (except for the falsified isochronism theory) it has never been stated in such precise terms that it could be subjected to crucial tests1,2,3,4,5,6. On the other hand, the chemical hypothesis in its original form (acetylcholine as transmitter) was falsified by an investigation of the action of eserine, and has had to be modified by the addition of ad hoc hypotheses7; but the situation remains unsatisfactory because there seems little hope of testing these ad hoc hypotheses independently, and because recent work suggests that chemical transmission plays a subordinate or negligible part in junctional transmission in sympathetic ganglia3 and the spinal cord4. Meanwhile, during the last eight years important advances have been made in the investigation of the electrical properties of nerve fibres, and of the electrical events occurring in junctional transmission; hence the time has seemed opportune to elaborate on these bases an electrical hypothesis (or model) of transmission that is capable of experimental test.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eccles, J. C., Ergebn. Physiol., 38, 339 (1936).

    Article  Google Scholar 

  2. Arvanitaki, A., J. Neurophysiol., 5, 89 (1942).

    Article  Google Scholar 

  3. Eccles, J. C., J. Physiol., 103, 27 (1944).

    Article  CAS  Google Scholar 

  4. Eccles, J. C., submitted to J. Physiol. (1945).

  5. Lorente de Nó, R., J. Neurophysiol., 2, 402 (1939).

    Article  Google Scholar 

  6. Schaefer, H., and Haass, P., Pflug. Arch. ges. Physiol., 242, 364 (1939).

    Article  Google Scholar 

  7. Eccles, J. C., Katz, B., and Kuffler, S. W., J. Neurophysiol., 5, 211 (1942).

    Article  CAS  Google Scholar 

  8. Cole, K. S., J. Gen. Physiol., 25, 29 (1941).

    Article  CAS  Google Scholar 

  9. Cole, K. S., and Baker, R. F., J. Gen. Physiol., 24, 535 (1941).

    Article  CAS  Google Scholar 

  10. Cole, K. S., and Curtis, A. J., J. Gen. Physiol., 24, 551 (1941).

    Article  CAS  Google Scholar 

  11. Katz, B., J. Neurophysiol., 5, 169 (1942).

    Article  Google Scholar 

  12. Bishop, G. H., Ann. Rev. Physiol., 3, 1 (1941).

    Article  Google Scholar 

  13. Gerard, R. W., Ann. Rev. Physiol., 4, 329 (1942).

    Article  Google Scholar 

  14. Granit, R., and Skoglund, C. R., J. Physiol., 103, 435 (1945).

    Article  CAS  Google Scholar 

  15. Kuffler, S. W., J. Neurophysiol., 5, 309 (1942).

    Article  Google Scholar 

  16. Marmont, G., Amer. J. Physiol., 133, 376P (1941).

    Google Scholar 

  17. Pumphrey, R. J., Schmitt, O. H., and Young, J. Z., J. Physiol., 98, 47 (1940).

    Article  CAS  Google Scholar 

  18. Schmitt, F. O., and Schmitt, O. H., J. Physiol., 98, 26 (1940).

    Article  CAS  Google Scholar 

  19. Hodgkin, A., Proc. Roy. Soc., B, 126, 87 (1938).

    ADS  Google Scholar 

  20. Lloyd, D. P. C., J. Neurophysiol., 6, 143 (1943).

    Article  Google Scholar 

  21. Kuffler, S. W., J. Neurophysiol., 5, 18 (1942).

    Article  Google Scholar 

  22. Kuffler, S. W., J. Neurophysiol., 6, 99 (1943).

    Article  CAS  Google Scholar 

  23. Kuffler, S. W., J. Neurophysiol., 8, 77 (1945).

    Article  CAS  Google Scholar 

  24. Eccles, J. C., J. Physiol., 101, 465 (1943).

    Article  CAS  Google Scholar 

  25. Eccles, J. C., Katz, B., and Kuffler, S. W., J. Neurophysiol., 4, 362 (1941).

    Article  Google Scholar 

  26. Katz, B., and Schmitt, O. H., J. Physiol., 97, 471 (1940).

    Article  CAS  Google Scholar 

  27. Marrazzi, A. S., and Lorente de Nó, R., J. Neurophysiol., 7, 83 (1944).

    Article  Google Scholar 

  28. Eccles, J. C. and Malcolm, J. L., submitted to J. Physiol. (1945).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ECCLES, J. An Electrical Hypothesis of Synaptic and Neuromuscular Transmission. Nature 156, 680–683 (1945). https://doi.org/10.1038/156680a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/156680a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing