Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The latent membrane protein 1 oncogene modifies B-cell physiology by regulating autophagy

Abstract

Epstein–Barr virus (EBV) is a herpes virus that is associated with several human cancers. Infection of B cells by EBV leads to their induction and maintenance of proliferation and requires the oncogene, latent membrane protein 1 (LMP1). LMP1 signals in a ligand-independent manner and is expressed at widely different levels in cells of a single clone. It is this unusual distribution that allows LMP1 to stimulate multiple, distinct pathways. Average levels of LMP1 induce proliferation while high levels induce cytostasis and inhibition of protein synthesis. These inhibitory pathways are induced by the six transmembrane domains of LMP1. We uncovered a novel function encoded by transmembrane domains 3–6 of LMP1; they induce autophagy in a dose-dependent manner and thus, modify the physiology of their host. Cells that express low levels of LMP1 display early stages of autophagy, autophagosomes; those that express high levels of this oncogene display late stages of autophagy, autolysosomes. Inhibition of autophagy in EBV-positive cells leads to an accumulation of LMP1 and a decreased ability to form colonies. These results indicate that LMP1's induction of autophagy contributes to its own regulation and that of its host cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Baehrecke EH . (2005). Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6: 505–510.

    Article  CAS  Google Scholar 

  • Baichwal VR, Sugden B . (1987). Posttranslational processing of an Epstein–Barr virus-encoded membrane protein expressed in cells transformed by Epstein–Barr virus. J Virol 61: 866–875.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bornkamm GW, Hammerschmidt W . (2001). Molecular virology of Epstein–Barr virus. Philos Trans R Soc Lond B Biol Sci 356: 437–459.

    Article  CAS  Google Scholar 

  • Delecluse HJ, Hilsendegen T, Pich D, Zeidler R, Hammerschmidt W . (1998). Propagation and recovery of intact, infectious Epstein–Barr virus from prokaryotic to human cells. Proc Natl Acad Sci USA 95: 8245–8250.

    Article  CAS  Google Scholar 

  • Devergne O, Hatzivassiliou E, Izumi KM, Kaye KM, Kleijnen MF, Kieff E et al. (1996). Association of TRAF1, TRAF2, and TRAF3 with an Epstein–Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kappaB activation. Mol Cell Biol 16: 7098–7108.

    Article  CAS  Google Scholar 

  • Dirmeier U, Hoffmann R, Kilger E, Schultheiss U, Briseno C, Gires O et al. (2005). Latent membrane protein 1 of Epstein–Barr virus coordinately regulates proliferation with control of apoptosis. Oncogene 24: 1711–1717.

    Article  CAS  Google Scholar 

  • Dirmeier U, Neuhierl B, Kilger E, Reisbach G, Sandberg ML, Hammerschmidt W . (2003). Latent membrane protein 1 is critical for efficient growth transformation of human B cells by Epstein–Barr virus. Cancer Res 63: 2982–2989.

    CAS  PubMed  Google Scholar 

  • Gires O, Kohlhuber F, Kilger E, Baumann M, Kieser A, Kaiser C et al. (1999). Latent membrane protein 1 of Epstein–Barr virus interacts with JAK3 and activates STAT proteins. EMBO J 18: 3064–3073.

    Article  CAS  Google Scholar 

  • Gires O, Zimber-Strobl U, Gonnella R, Ueffing M, Marschall G, Zeidler R et al. (1997). Latent membrane protein 1 of Epstein–Barr virus mimics a constitutively active receptor molecule. EMBO J 16: 6131–6140.

    Article  CAS  Google Scholar 

  • Gregory CD, Rowe M, Rickinson AB . (1990). Different Epstein–Barr virus-B cell interactions in phenotypically distinct clones of a Burkitt's lymphoma cell line. J Gen Virol 71 (Part 7): 1481–1495.

    Article  CAS  Google Scholar 

  • Humme S, Reisbach G, Feederle R, Delecluse HJ, Bousset K, Hammerschmidt W et al. (2003). The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc Natl Acad Sci USA 100: 10989–10994.

    Article  CAS  Google Scholar 

  • Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N et al. (2000). A ubiquitin-like system mediates protein lipidation. Nature 408: 488–492.

    Article  CAS  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T et al. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19: 5720–5728.

    Article  CAS  Google Scholar 

  • Kavathas P, Bach FH, DeMars R . (1980). Gamma ray-induced loss of expression of HLA and glyoxalase I alleles in lymphoblastoid cells. Proc Natl Acad Sci USA 77: 4251–4255.

    Article  CAS  Google Scholar 

  • Kaye KM, Izumi KM, Kieff E . (1993). Epstein–Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci USA 90: 9150–9154.

    Article  CAS  Google Scholar 

  • Kaykas A, Sugden B . (2000). The amino-terminus and membrane-spanning domains of LMP-1 inhibit cell proliferation. Oncogene 19: 1400–1410.

    Article  CAS  Google Scholar 

  • Kaykas A, Worringer K, Sugden B . (2002). LMP-1's transmembrane domains encode multiple functions required for LMP-1's efficient signaling. J Virol 76: 11551–11560.

    Article  CAS  Google Scholar 

  • Kieser A, Kilger E, Gires O, Ueffing M, Kolch W, Hammerschmidt W . (1997). Epstein–Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. EMBO J 16: 6478–6485.

    Article  CAS  Google Scholar 

  • Kilger E, Kieser A, Baumann M, Hammerschmidt W . (1998). Epstein–Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J 17: 1700–1709.

    Article  CAS  Google Scholar 

  • Knutson JC, Yee D . (1987). Electroporation: parameters affecting transfer of DNA into mammalian cells. Anal Biochem 164: 44–52.

    Article  CAS  Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I et al. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441: 880–884.

    Article  CAS  Google Scholar 

  • Lam N, Sandberg ML, Sugden B . (2004). High physiological levels of LMP1 result in phosphorylation of eIF2 alpha in Epstein–Barr virus-infected cells. J Virol 78: 1657–1664.

    Article  CAS  Google Scholar 

  • Lam N, Sugden B . (2003). CD40 and its viral mimic, LMP1: similar means to different ends. Cell Signal 15: 9–16.

    Article  CAS  Google Scholar 

  • Lee J, Sugden B . (2007). A membrane leucine heptad contributes to LMP1's trafficking, signaling and transformation. J Virol 81: 9121–9130.

    Article  CAS  Google Scholar 

  • Martin J, Sugden B . (1991). Transformation by the oncogenic latent membrane protein correlates with its rapid turnover, membrane localization, and cytoskeletal association. J Virol 65: 3246–3258.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD et al. (1998). A protein conjugation system essential for autophagy. Nature 395: 395–398.

    Article  CAS  Google Scholar 

  • Mosialos G, Birkenbach M, Yalamanchili R, VanArsdale T, Ware C, Kieff E . (1995). The Epstein–Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80: 389–399.

    Article  CAS  Google Scholar 

  • Neuhierl B, Feederle R, Hammerschmidt W, Delecluse HJ . (2002). Glycoprotein gp110 of Epstein–Barr virus determines viral tropism and efficiency of infection. Proc Natl Acad Sci USA 99: 15036–15041.

    Article  CAS  Google Scholar 

  • Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T et al. (2005). Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307: 593–596.

    Article  CAS  Google Scholar 

  • Ravikumar B, Duden R, Rubinsztein DC . (2002). Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11: 1107–1117.

    Article  CAS  Google Scholar 

  • Sandberg M, Hammerschmidt W, Sugden B . (1997). Characterization of LMP-1's association with TRAF1, TRAF2, and TRAF3. J Virol 71: 4649–4656.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanida I, Ueno T, Kominami E . (2004). Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes. J Biol Chem 279: 47704–47710.

    Article  CAS  Google Scholar 

  • Tassa A, Roux MP, Attaix D, Bechet DM . (2003). Class III phosphoinositide 3-kinase—Beclin1 complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem J 376: 577–586.

    Article  CAS  Google Scholar 

  • Taylor GS, Long HM, Haigh TA, Larsen M, Brooks J, Rickinson AB . (2006). A role for intercellular antigen transfer in the recognition of EBV-transformed B cell lines by EBV nuclear antigen-specific CD4+ T cells. J Immunol 177: 3746–3756.

    Article  CAS  Google Scholar 

  • Uchida J, Yasui T, Takaoka-Shichijo Y, Muraoka M, Kulwichit W, Raab-Traub N et al. (1999). Mimicry of CD40 signals by Epstein–Barr virus LMP1 in B lymphocyte responses. Science 286: 300–303.

    Article  CAS  Google Scholar 

  • Yoshimori T . (2004). Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun 313: 453–458.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Takashi Ueno for kindly providing the antibody against LC3. We also thank Dr Marisa Otegui and Dr Tomomi Nakahara for valuable discussions. We are grateful to the Flow Cytometry Facility of the UW Paul P Carbone Comprehensive Cancer Center and the UW-Electron Microscope Facility. This work was supported by NIH grants CA070723 and P30 CA014520. Bill Sugden is an American Cancer Society Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Sugden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D., Sugden, B. The latent membrane protein 1 oncogene modifies B-cell physiology by regulating autophagy. Oncogene 27, 2833–2842 (2008). https://doi.org/10.1038/sj.onc.1210946

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210946

Keywords

This article is cited by

Search

Quick links