Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Obesity and polymorphisms in genes regulating human adipose tissue

Abstract

Obesity is the result of an imbalance between food intake and energy expenditure resulting in the storing of energy as fat. Adipose tissue contains the largest store of energy in the body and plays important roles in regulating energy partitioning. Developments in genomics, in particular microarray-based expression profiling, have provided scientists with a number of new candidate genes whose expression in adipose tissue is regulated by obesity. Integrating expression profiles with genome-wide linkage and/or association analyses is a promising strategy to identify new genes underlying susceptibility to obesity. This article provides a comprehensive review of adipose-tissue-expressed genes implicated in predisposition to human obesity. The authors consider the following genes of particular interest: peroxisome proliferator-activated receptor gamma and, potentially, INSIG2 acting in adipogenesis; the adrenoreceptors beta 2 and 3, as well as hormone-sensitive lipase acting on lipolysis; uncoupling protein 2 acting in mitochondria energy expenditure; and among secreted molecules the cytokine tumor necrosis factor alpha and the hormone leptin. With the rapid development in genome research, we predict that additional alleles in genes regulating adipose tissue function will be established as risk factors for common obesity in the coming years. This has important implications for the prevention of obesity and may also offer new therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Pritchard JK, Cox NJ . The allelic architecture of human disease genes: common disease-common variant…or not? Hum Mol Genet 2002; 11: 2417–2423.

    CAS  PubMed  Google Scholar 

  2. Snyder EE, Walts B, Perusse L, Chagnon YC, Weisnagel SJ, Rankinen T et al. The human obesity gene map: the 2003 update. Obes Res 2004; 12: 369–439.

    CAS  PubMed  Google Scholar 

  3. Arner P . Hunting for human obesity genes? Look in the adipose tissue!. Int J Obes Relat Metab Disord 2000; 24 (Suppl 4): S57–S62.

    CAS  PubMed  Google Scholar 

  4. Dahlman I, Linder K, Arvidsson Nordstrom E, Andersson I, Liden J, Verdich C et al. Changes in adipose tissue gene expression with energy-restricted diets in obese women. Am J Clin Nutr 2005; 81: 1275–1285.

    CAS  PubMed  Google Scholar 

  5. Dahlman I, Kaaman M, Jiao H, Kere J, Laakso M, Arner P . The CIDEA gene V115F polymorphism is associated with obesity in Swedish subjects. Diabetes 2005; 54: 3032–3034.

    CAS  PubMed  Google Scholar 

  6. Dahlman I, Kaaman M, Olsson T, Tan GD, Bickerton AS, Wahlen K et al. A unique role of monocyte chemoattractant protein 1 among chemokines in adipose tissue of obese subjects. J Clin Endocrinol Metab 2005; 90: 5834–5840.

    CAS  PubMed  Google Scholar 

  7. Kussmann M, Affolter M . Proteomic methods in nutrition. Curr Opin Clin Nutr Metab Care 2006; 9: 575–583.

    CAS  PubMed  Google Scholar 

  8. Walsh MC, Brennan L, Malthouse JP, Roche HM, Gibney MJ . Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am J Clin Nutr 2006; 84: 531–539.

    CAS  PubMed  Google Scholar 

  9. Akesson M, Forster J, Nielsen J . Integration of gene expression data into genome-scale metabolic models. Metab Eng 2004; 6: 285–293.

    CAS  PubMed  Google Scholar 

  10. Wang WY, Barratt BJ, Clayton DG, Todd JA . Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 2005; 6: 109–118.

    CAS  PubMed  Google Scholar 

  11. Freedman ML, Reich D, Penney KL, McDonald GJ, Mignault AA, Patterson N et al. Assessing the impact of population stratification on genetic association studies. Nat Genet 2004; 36: 388–393.

    CAS  PubMed  Google Scholar 

  12. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 2005; 37: 710–717.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schadt EE, Lum PY . Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Reverse engineering gene networks to identify key drivers of complex disease phenotypes. J Lipid Res 2006; 47: 2601–2613.

    CAS  PubMed  Google Scholar 

  14. Hauner H, Entenmann G, Wabitsch M, Gaillard D, Ailhaud G, Negrel R et al. Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest 1989; 84: 1663–1670.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Large V, Peroni O, Letexier D, Ray H, Beylot M . Metabolism of lipids in human white adipocyte. Diabetes Metab 2004; 30: 294–309.

    CAS  PubMed  Google Scholar 

  16. Wilson-Fritch L, Nicoloro S, Chouinard M, Lazar MA, Chui PC, Leszyk J et al. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest 2004; 114: 1281–1289.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gardner M, Gonzalez-Neira A, Lao O, Calafell F, Bertranpetit J, Comas D . Extreme population differences across Neuregulin 1 gene, with implications for association studies. Mol Psychiatry 2006; 11: 66–75.

    CAS  PubMed  Google Scholar 

  18. Lin PI, Vance JM, Pericak-Vance MA, Martin ER . No gene is an island: the flip-flop phenomenon. Am J Hum Genet 2007; 80: 531–538.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lehrke M, Lazar MA . The many faces of PPARgamma. Cell 2005; 123: 993–999.

    CAS  PubMed  Google Scholar 

  20. Gurnell M . Peroxisome proliferator-activated receptor gamma and the regulation of adipocyte function: lessons from human genetic studies. Best Pract Res Clin Endocrinol Metab 2005; 19: 501–523.

    CAS  PubMed  Google Scholar 

  21. Ristow M, Muller-Wieland D, Pfeiffer A, Krone W, Kahn CR . Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med 1998; 339: 953–959.

    CAS  PubMed  Google Scholar 

  22. Bluher M, Paschke R . Analysis of the relationship between PPAR-gamma 2 gene variants and severe insulin resistance in obese patients with impaired glucose tolerance. Exp Clin Endocrinol Diabetes 2003; 111: 85–90.

    CAS  PubMed  Google Scholar 

  23. Giusti V, Verdumo C, Suter M, Gaillard RC, Burckhardt P, Pralong F . Expression of peroxisome proliferator-activated receptor-gamma1 and peroxisome proliferator-activated receptor-gamma2 in visceral and subcutaneous adipose tissue of obese women. Diabetes 2003; 52: 1673–1676.

    CAS  PubMed  Google Scholar 

  24. Vidal-Puig AJ, Considine RV, Jimenez-Linan M, Werman A, Pories WJ, Caro JF et al. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest 1997; 99: 2416–2422.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rieusset J, Andreelli F, Auboeuf D, Roques M, Vallier P, Riou JP et al. Insulin acutely regulates the expression of the peroxisome proliferator-activated receptor-gamma in human adipocytes. Diabetes 1999; 48: 699–705.

    CAS  PubMed  Google Scholar 

  26. Masud S, Ye S . Effect of the peroxisome proliferator activated receptor-gamma gene Pro12Ala variant on body mass index: a meta-analysis. J Med Genet 2003; 40: 773–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cecil JE, Watt P, Palmer CN, Hetherington M . Energy balance and food intake: the role of PPARgamma gene polymorphisms. Physiol Behav 2006; 88: 227–233.

    CAS  PubMed  Google Scholar 

  28. Lindi VI, Uusitupa MI, Lindstrom J, Louheranta A, Eriksson JG, Valle TT et al. Association of the Pro12Ala polymorphism in the PPAR-gamma2 gene with 3-year incidence of type 2 diabetes and body weight change in the Finnish Diabetes Prevention Study. Diabetes 2002; 51: 2581–2586.

    CAS  PubMed  Google Scholar 

  29. Deeb SS, Fajas L, Nemoto M, Pihlajamaki J, Mykkanen L, Kuusisto J et al. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 1998; 20: 284–287.

    CAS  PubMed  Google Scholar 

  30. Kim JB, Spiegelman BM . ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 1996; 10: 1096–1107.

    CAS  PubMed  Google Scholar 

  31. Fajas L, Schoonjans K, Gelman L, Kim JB, Najib J, Martin G et al. Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol 1999; 19: 5495–5503.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang T, Espenshade PJ, Wright ME, Yabe D, Gong Y, Aebersold R et al. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 2002; 110: 489–500.

    CAS  PubMed  Google Scholar 

  33. Li J, Takaishi K, Cook W, McCorkle SK, Unger RH . Insig-1 ‘brakes’ lipogenesis in adipocytes and inhibits differentiation of preadipocytes. Proc Natl Acad Sci USA 2003; 100: 9476–9481.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig T et al. A common genetic variant is associated with adult and childhood obesity. Science 2006; 312: 279–283.

    CAS  PubMed  Google Scholar 

  35. Kolehmainen M, Vidal H, Alhava E, Uusitupa MI . Sterol regulatory element binding protein 1c (SREBP-1c) expression in human obesity. Obes Res 2001; 9: 706–712.

    CAS  PubMed  Google Scholar 

  36. Eberle D, Clement K, Meyre D, Sahbatou M, Vaxillaire M, Le Gall A et al. SREBF-1 gene polymorphisms are associated with obesity and type 2 diabetes in French obese and diabetic cohorts. Diabetes 2004; 53: 2153–2157.

    CAS  PubMed  Google Scholar 

  37. Capanni C, Mattioli E, Columbaro M, Lucarelli E, Parnaik VK, Novelli G et al. Altered pre-lamin A processing is a common mechanism leading to lipodystrophy. Hum Mol Genet 2005; 14: 1489–1502.

    CAS  PubMed  Google Scholar 

  38. Hegele RA, Cao H, Harris SB, Zinman B, Hanley AJ, Anderson CM . Genetic variation in LMNA modulates plasma leptin and indices of obesity in aboriginal Canadians. Physiol Genomics 2000; 3: 39–44.

    CAS  PubMed  Google Scholar 

  39. Hegele RA, Huff MW, Young TK . Common genomic variation in LMNA modulates indexes of obesity in Inuit. J Clin Endocrinol Metab 2001; 86: 2747–2751.

    CAS  PubMed  Google Scholar 

  40. Davis KE, Moldes M, Farmer SR . The forkhead transcription factor FoxC2 inhibits white adipocyte differentiation. J Biol Chem 2004; 279: 42453–42461.

    CAS  PubMed  Google Scholar 

  41. Cederberg A, Gronning LM, Ahren B, Tasken K, Carlsson P, Enerback S . FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 2001; 106: 563–573.

    CAS  PubMed  Google Scholar 

  42. Kovacs P, Lehn-Stefan A, Stumvoll M, Bogardus C, Baier LJ . Genetic variation in the human winged helix/forkhead transcription factor gene FOXC2 in Pima Indians. Diabetes 2003; 52: 1292–1295.

    CAS  PubMed  Google Scholar 

  43. Carlsson E, Almgren P, Hoffstedt J, Groop L, Ridderstrale M . The FOXC2 C-512T polymorphism is associated with obesity and dyslipidemia. Obes Res 2004; 12: 1738–1743.

    CAS  PubMed  Google Scholar 

  44. Di Gregorio GB, Westergren R, Enerback S, Lu T, Kern PA . Expression of FOXC2 in adipose and muscle and its association with whole body insulin sensitivity. Am J Physiol Endocrinol Metab 2004; 287: E799–E803.

    CAS  PubMed  Google Scholar 

  45. Banerjee SS, Feinberg MW, Watanabe M, Gray S, Haspel RL, Denkinger DJ et al. The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. J Biol Chem 2003; 278: 2581–2584.

    PubMed  Google Scholar 

  46. Meirhaeghe A, Cottel D, Amouyel P . A study of the relationships between KLF2 polymorphisms and body weight control in a French population. BMC Med Genet 2006; 7: 26.

    PubMed  PubMed Central  Google Scholar 

  47. Longo KA, Wright WS, Kang S, Gerin I, Chiang SH, Lucas PC et al. Wnt10b inhibits development of white and brown adipose tissues. J Biol Chem 2004; 279: 35503–35509.

    CAS  PubMed  Google Scholar 

  48. Christodoulides C, Scarda A, Granzotto M, Milan G, Dalla Nora E, Keogh J et al. WNT10B mutations in human obesity. Diabetologia 2006; 49: 678–684.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Suviolahti E, Reue K, Cantor RM, Phan J, Gentile M, Naukkarinen J et al. Cross-species analyses implicate Lipin 1 involvement in human glucose metabolism. Hum Mol Genet 2006; 15: 377–386.

    CAS  PubMed  Google Scholar 

  50. van Harmelen V, Ryden M, Sjolin E, Hoffstedt J . A role of lipin in human obesity and insulin resistance; relation with adipocyte glucose transport and GLUT4 expression. J Lipid Res 2007; 48: 201–206.

    CAS  PubMed  Google Scholar 

  51. Ludwig EH, Mahley RW, Palaoglu E, Ozbayrakci S, Balestra ME, Borecki IB et al. DGAT1 promoter polymorphism associated with alterations in body mass index, high density lipoprotein levels and blood pressure in Turkish women. Clin Genet 2002; 62: 68–73.

    PubMed  Google Scholar 

  52. Coudreau SK, Tounian P, Bonhomme G, Froguel P, Girardet JP, Guy-Grand B et al. Role of the DGAT gene C79T single-nucleotide polymorphism in French obese subjects. Obes Res 2003; 11: 1163–1167.

    CAS  PubMed  Google Scholar 

  53. Martin LJ, Cianflone K, Zakarian R, Nagrani G, Almasy L, Rainwater DL et al. Bivariate linkage between acylation-stimulating protein and BMI and high-density lipoproteins. Obes Res 2004; 12: 669–678.

    CAS  PubMed  Google Scholar 

  54. Moro C, Crampes F, Sengenes C, De Glisezinski I, Galitzky J, Thalamas C et al. Atrial natriuretic peptide contributes to physiological control of lipid mobilization in humans. FASEB J 2004; 18: 908–910.

    CAS  PubMed  Google Scholar 

  55. Green SA, Turki J, Bejarano P, Hall IP, Liggett SB . Influence of beta 2-adrenergic receptor genotypes on signal transduction in human airway smooth muscle cells. Am J Respir Cell Mol Biol 1995; 13: 25–33.

    CAS  PubMed  Google Scholar 

  56. McGraw DW, Forbes SL, Kramer LA, Liggett SB . Polymorphisms of the 5′ leader cistron of the human beta2-adrenergic receptor regulate receptor expression. J Clin Invest 1998; 102: 1927–1932.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Large V, Hellstrom L, Reynisdottir S, Lonnqvist F, Eriksson P, Lannfelt L et al. Human beta-2 adrenoceptor gene polymorphisms are highly frequent in obesity and associate with altered adipocyte beta-2 adrenoceptor function. J Clin Invest 1997; 100: 3005–3013.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ishiyama-Shigemoto S, Yamada K, Yuan X, Ichikawa F, Nonaka K . Association of polymorphisms in the beta2-adrenergic receptor gene with obesity, hypertriglyceridaemia, and diabetes mellitus. Diabetologia 1999; 42: 98–101.

    CAS  PubMed  Google Scholar 

  59. Meirhaeghe A, Luan J, Selberg-Franks P, Hennings S, Mitchell J, Halsall D et al. The effect of the Gly16Arg polymorphism of the beta(2)-adrenergic receptor gene on plasma free fatty acid levels is modulated by physical activity. J Clin Endocrinol Metab 2001; 86: 5881–5887.

    CAS  PubMed  Google Scholar 

  60. Rosmond R . Association studies of genetic polymorphisms in central obesity: a critical review. Int J Obes Relat Metab Disord 2003; 27: 1141–1151.

    CAS  PubMed  Google Scholar 

  61. Masuo K, Katsuya T, Kawaguchi H, Fu Y, Rakugi H, Ogihara T et al. Rebound weight gain as associated with high plasma norepinephrine levels that are mediated through polymorphisms in the beta2-adrenoceptor. Am J Hypertens 2005; 18: 1508–1516.

    CAS  PubMed  Google Scholar 

  62. Drysdale CM, McGraw DW, Stack CB, Stephens JC, Judson RS, Nandabalan K et al. Complex promoter and coding region beta 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc Natl Acad Sci USA 2000; 97: 10483–10488.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Eriksson P, Dahlman I, Ryden M, Hoffstedt J, Arner P . Relationship between beta-2 adrenoceptor gene haplotypes and adipocyte lipolysis in women. Int J Obes Relat Metab Disord 2004; 28: 185–190.

    CAS  PubMed  Google Scholar 

  64. Jiao H, Dahlman I, Eriksson P, Kere J, Arner P . A common beta2-adrenoceptor gene haplotype protects against obesity in Swedish women. Obes Res 2005; 13: 1645–1650.

    CAS  PubMed  Google Scholar 

  65. Clement K, Vaisse C, Manning BS, Basdevant A, Guy-Grand B, Ruiz J et al. Genetic variation in the beta 3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N Engl J Med 1995; 333: 352–354.

    CAS  PubMed  Google Scholar 

  66. Kadowaki H, Yasuda K, Iwamoto K, Otabe S, Shimokawa K, Silver K et al. A mutation in the beta 3-adrenergic receptor gene is associated with obesity and hyperinsulinemia in Japanese subjects. Biochem Biophys Res Commun 1995; 215: 555–560.

    CAS  PubMed  Google Scholar 

  67. Gagnon J, Mauriege P, Roy S, Sjostrom D, Chagnon YC, Dionne FT et al. The Trp64Arg mutation of the beta3 adrenergic receptor gene has no effect on obesity phenotypes in the Quebec Family Study and Swedish Obese Subjects cohorts. J Clin Invest 1996; 98: 2086–2093.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim-Motoyama H, Yasuda K, Yamaguchi T, Yamada N, Katakura T, Shuldiner AR et al. A mutation of the beta 3-adrenergic receptor is associated with visceral obesity but decreased serum triglyceride. Diabetologia 1997; 40: 469–472.

    CAS  PubMed  Google Scholar 

  69. Moriarty M, Wing RR, Kuller LH, Ferrell RE . Trp64Arg substitution in the beta 3-adrenergic receptor does not relate to body weight in healthy, premenopausal women. Int J Obes Relat Metab Disord 1997; 21: 826–829.

    CAS  PubMed  Google Scholar 

  70. Hoffstedt J, Poirier O, Thorne A, Lonnqvist F, Herrmann SM, Cambien F et al. Polymorphism of the human beta3-adrenoceptor gene forms a well-conserved haplotype that is associated with moderate obesity and altered receptor function. Diabetes 1999; 48: 203–205.

    CAS  PubMed  Google Scholar 

  71. Sipilainen R, Uusitupa M, Heikkinen S, Rissanen A, Laakso M . Polymorphism of the beta3-adrenergic receptor gene affects basal metabolic rate in obese Finns. Diabetes 1997; 46: 77–80.

    CAS  PubMed  Google Scholar 

  72. Mason DA, Moore JD, Green SA, Liggett SB . A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor. J Biol Chem 1999; 274: 12670–12674.

    CAS  PubMed  Google Scholar 

  73. Dionne IJ, Garant MJ, Nolan AA, Pollin TI, Lewis DG, Shuldiner AR et al. Association between obesity and a polymorphism in the beta(1)-adrenoceptor gene (Gly389Arg ADRB1) in Caucasian women. Int J Obes Relat Metab Disord 2002; 26: 633–639.

    CAS  PubMed  Google Scholar 

  74. Ryden M, Hoffstedt J, Eriksson P, Bringman S, Arner P . The Arg 389 Gly beta1-adrenergic receptor gene polymorphism and human fat cell lipolysis. Int J Obes Relat Metab Disord 2001; 25: 1599–1603.

    CAS  PubMed  Google Scholar 

  75. Rathz DA, Brown KM, Kramer LA, Liggett SB . Amino acid 49 polymorphisms of the human beta1-adrenergic receptor affect agonist-promoted trafficking. J Cardiovasc Pharmacol 2002; 39: 155–160.

    CAS  PubMed  Google Scholar 

  76. Linne Y, Dahlman I, Hoffstedt J . beta1-Adrenoceptor gene polymorphism predicts long-term changes in body weight. Int J Obes (Lond) 2005; 29: 458–462.

    CAS  Google Scholar 

  77. Siffert W, Rosskopf D, Siffert G, Busch S, Moritz A, Erbel R et al. Association of a human G-protein beta3 subunit variant with hypertension. Nat Genet 1998; 18: 45–48.

    CAS  PubMed  Google Scholar 

  78. Ryden M, Faulds G, Hoffstedt J, Wennlund A, Arner P . Effect of the (C825T) Gbeta(3) polymorphism on adrenoceptor-mediated lipolysis in human fat cells. Diabetes 2002; 51: 1601–1608.

    CAS  PubMed  Google Scholar 

  79. Hegele RA, Anderson C, Young TK, Connelly PW . G-protein beta3 subunit gene splice variant and body fat distribution in Nunavut Inuit. Genome Res 1999; 9: 972–977.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Benjafield AV, Lin RC, Dalziel B, Gosby AK, Caterson ID, Morris BJ . G-protein beta3 subunit gene splice variant in obesity and overweight. Int J Obes Relat Metab Disord 2001; 25: 777–780.

    CAS  PubMed  Google Scholar 

  81. Brand E, Wang JG, Herrmann SM, Staessen JA . An epidemiological study of blood pressure and metabolic phenotypes in relation to the Gbeta3 C825T polymorphism. J Hypertens 2003; 21: 729–737.

    CAS  PubMed  Google Scholar 

  82. Stefan N, Stumvoll M, Machicao F, Koch M, Haring HU, Fritsche A . C825T polymorphism of the G protein beta3 subunit is associated with obesity but not with insulin sensitivity. Obes Res 2004; 12: 679–683.

    CAS  PubMed  Google Scholar 

  83. Langin D, Dicker A, Tavernier G, Hoffstedt J, Mairal A, Ryden M et al. Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 2005; 54: 3190–3197.

    CAS  PubMed  Google Scholar 

  84. Large V, Reynisdottir S, Langin D, Fredby K, Klannemark M, Holm C et al. Decreased expression and function of adipocyte hormone-sensitive lipase in subcutaneous fat cells of obese subjects. J Lipid Res 1999; 40: 2059–2066.

    CAS  PubMed  Google Scholar 

  85. Lofgren P, Hoffstedt J, Ryden M, Thorne A, Holm C, Wahrenberg H et al. Major gender differences in the lipolytic capacity of abdominal subcutaneous fat cells in obesity observed before and after long-term weight reduction. J Clin Endocrinol Metab 2002; 87: 764–771.

    CAS  PubMed  Google Scholar 

  86. Talmud PJ, Palmen J, Walker M . Identification of genetic variation in the human hormone-sensitive lipase gene and 5′ sequences: homology of 5′ sequences with mouse promoter and identification of potential regulatory elements. Biochem Biophys Res Commun 1998; 252: 661–668.

    CAS  PubMed  Google Scholar 

  87. Garenc C, Perusse L, Chagnon YC, Rankinen T, Gagnon J, Borecki IB et al. The hormone-sensitive lipase gene and body composition: the HERITAGE Family Study. Int J Obes Relat Metab Disord 2002; 26: 220–227.

    CAS  PubMed  Google Scholar 

  88. Talmud PJ, Palmen J, Wolf AM, Beisiegel U . Investigation into the role of the hormone sensitive lipase −60C>G promoter variant in morbid obesity. Nutr Metab Cardiovasc Dis 2005; 15: 31–35.

    PubMed  Google Scholar 

  89. Carlsson E, Johansson LE, Strom K, Hoffstedt J, Groop L, Holm C et al. The hormone-sensitive lipase C−60G promoter polymorphism is associated with increased waist circumference in normal-weight subjects. Int J Obes (Lond) 2006; 30: 1442–1448.

    CAS  Google Scholar 

  90. Magre J, Laurell H, Fizames C, Antoine PJ, Dib C, Vigouroux C et al. Human hormone-sensitive lipase: genetic mapping, identification of a new dinucleotide repeat, and association with obesity and NIDDM. Diabetes 1998; 47: 284–286.

    CAS  PubMed  Google Scholar 

  91. Hoffstedt J, Arner P, Schalling M, Pedersen NL, Sengul S, Ahlberg S et al. A common hormone-sensitive lipase i6 gene polymorphism is associated with decreased human adipocyte lipolytic function. Diabetes 2001; 50: 2410–2413.

    CAS  PubMed  Google Scholar 

  92. Lavebratt C, Ryden M, Schalling M, Sengul S, Ahlberg S, Hoffstedt J . The hormone-sensitive lipase i6 gene polymorphism and body fat accumulation. Eur J Clin Invest 2002; 32: 938–942.

    CAS  PubMed  Google Scholar 

  93. Mairal A, Langin D, Arner P, Hoffstedt J . Human adipose triglyceride lipase (PNPLA2) is not regulated by obesity and exhibits low in vitro triglyceride hydrolase activity. Diabetologia 2006; 49: 1629–1636.

    CAS  PubMed  Google Scholar 

  94. Schoenborn V, Heid IM, Vollmert C, Lingenhel A, Adams TD, Hopkins PN et al. The ATGL gene is associated with free fatty acids, triglycerides, and type 2 diabetes. Diabetes 2006; 55: 1270–1275.

    CAS  PubMed  Google Scholar 

  95. Liu YM, Moldes M, Bastard JP, Bruckert E, Viguerie N, Hainque B et al. Adiponutrin: a new gene regulated by energy balance in human adipose tissue. J Clin Endocrinol Metab 2004; 89: 2684–2689.

    CAS  PubMed  Google Scholar 

  96. Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW . Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 2004; 279: 48968–48975.

    CAS  PubMed  Google Scholar 

  97. Johansson LE, Hoffstedt J, Parikh H, Carlsson E, Wabitsch M, Bondeson AG et al. Variation in the adiponutrin gene influences its expression and associates with obesity. Diabetes 2006; 55: 826–833.

    CAS  PubMed  Google Scholar 

  98. Kern PA, Di Gregorio G, Lu T, Rassouli N, Ranganathan G . Perilipin expression in human adipose tissue is elevated with obesity. J Clin Endocrinol Metab 2004; 89: 1352–1358.

    CAS  PubMed  Google Scholar 

  99. Mottagui-Tabar S, Ryden M, Lofgren P, Faulds G, Hoffstedt J, Brookes AJ et al. Evidence for an important role of perilipin in the regulation of human adipocyte lipolysis. Diabetologia 2003; 46: 789–797.

    CAS  PubMed  Google Scholar 

  100. Qi L, Shen H, Larson I, Schaefer EJ, Greenberg AS, Tregouet DA et al. Gender-specific association of a perilipin gene haplotype with obesity risk in a white population. Obes Res 2004; 12: 1758–1765.

    CAS  PubMed  Google Scholar 

  101. Qi L, Corella D, Sorli JV, Portoles O, Shen H, Coltell O et al. Genetic variation at the perilipin (PLIN) locus is associated with obesity-related phenotypes in White women. Clin Genet 2004; 66: 299–310.

    CAS  PubMed  Google Scholar 

  102. Corella D, Qi L, Sorli JV, Godoy D, Portoles O, Coltell O et al. Obese subjects carrying the 11482G>A polymorphism at the perilipin locus are resistant to weight loss after dietary energy restriction. J Clin Endocrinol Metab 2005; 90: 5121–5126.

    CAS  PubMed  Google Scholar 

  103. Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydoux J et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett 1997; 408: 39–42.

    CAS  PubMed  Google Scholar 

  104. Cassard AM, Bouillaud F, Mattei MG, Hentz E, Raimbault S, Thomas M et al. Human uncoupling protein gene: structure, comparison with rat gene, and assignment to the long arm of chromosome 4. J Cell Biochem 1990; 43: 255–264.

    CAS  PubMed  Google Scholar 

  105. Gimeno RE, Dembski M, Weng X, Deng N, Shyjan AW, Gimeno CJ et al. Cloning and characterization of an uncoupling protein homolog: a potential molecular mediator of human thermogenesis. Diabetes 1997; 46: 900–906.

    CAS  PubMed  Google Scholar 

  106. Oberkofler H, Dallinger G, Liu YM, Hell E, Krempler F, Patsch W . Uncoupling protein gene: quantification of expression levels in adipose tissues of obese and non-obese humans. J Lipid Res 1997; 38: 2125–2133.

    CAS  PubMed  Google Scholar 

  107. Clement K, Ruiz J, Cassard-Doulcier AM, Bouillaud F, Ricquier D, Basdevant A et al. Additive effect of A → G (−3826) variant of the uncoupling protein gene and the Trp64Arg mutation of the beta 3-adrenergic receptor gene on weight gain in morbid obesity. Int J Obes Relat Metab Disord 1996; 20: 1062–1066.

    CAS  PubMed  Google Scholar 

  108. Urhammer SA, Fridberg M, Sorensen TI, Echwald SM, Andersen T, Tybjaerg-Hansen A et al. Studies of genetic variability of the uncoupling protein 1 gene in Caucasian subjects with juvenile-onset obesity. J Clin Endocrinol Metab 1997; 82: 4069–4074.

    CAS  PubMed  Google Scholar 

  109. Esterbauer H, Oberkofler H, Liu YM, Breban D, Hell E, Krempler F et al. Uncoupling protein-1 mRNA expression in obese human subjects: the role of sequence variations at the uncoupling protein-1 gene locus. J Lipid Res 1998; 39: 834–844.

    CAS  PubMed  Google Scholar 

  110. Urhammer SA, Hansen T, Borch-Johnsen K, Pedersen O . Studies of the synergistic effect of the Trp/Arg64 polymorphism of the beta3-adrenergic receptor gene and the −3826 A → G variant of the uncoupling protein-1 gene on features of obesity and insulin resistance in a population-based sample of 379 young Danish subjects. J Clin Endocrinol Metab 2000; 85: 3151–3154.

    CAS  PubMed  Google Scholar 

  111. Millet L, Vidal H, Andreelli F, Larrouy D, Riou JP, Ricquier D et al. Increased uncoupling protein-2 and -3 mRNA expression during fasting in obese and lean humans. J Clin Invest 1997; 100: 2665–2670.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Oberkofler H, Liu YM, Esterbauer H, Hell E, Krempler F, Patsch W . Uncoupling protein-2 gene: reduced mRNA expression in intraperitoneal adipose tissue of obese humans. Diabetologia 1998; 41: 940–946.

    CAS  PubMed  Google Scholar 

  113. Esterbauer H, Schneitler C, Oberkofler H, Ebenbichler C, Paulweber B, Sandhofer F et al. A common polymorphism in the promoter of UCP2 is associated with decreased risk of obesity in middle-aged humans. Nat Genet 2001; 28: 178–183.

    CAS  PubMed  Google Scholar 

  114. Kovacs P, Ma L, Hanson RL, Franks P, Stumvoll M, Bogardus C et al. Genetic variation in UCP2 (uncoupling protein-2) is associated with energy metabolism in Pima Indians. Diabetologia 2005; 48: 2292–2295.

    CAS  PubMed  Google Scholar 

  115. Walder K, Norman RA, Hanson RL, Schrauwen P, Neverova M, Jenkinson CP et al. Association between uncoupling protein polymorphisms (UCP2–UCP3) and energy metabolism/obesity in Pima Indians. Hum Mol Genet 1998; 7: 1431–1435.

    CAS  PubMed  Google Scholar 

  116. Cassell PG, Neverova M, Janmohamed S, Uwakwe N, Qureshi A, McCarthy MI et al. An uncoupling protein 2 gene variant is associated with a raised body mass index but not type II diabetes. Diabetologia 1999; 42: 688–692.

    CAS  PubMed  Google Scholar 

  117. Otabe S, Clement K, Rich N, Warden C, Pecqueur C, Neverova M et al. Mutation screening of the human UCP 2 gene in normoglycemic and NIDDM morbidly obese patients: lack of association between new UCP 2 polymorphisms and obesity in French Caucasians. Diabetes 1998; 47: 840–842.

    CAS  PubMed  Google Scholar 

  118. Dalgaard LT, Andersen G, Larsen LH, Sorensen TI, Andersen T, Drivsholm T et al. Mutational analysis of the UCP2 core promoter and relationships of variants with obesity. Obes Res 2003; 11: 1420–1427.

    CAS  PubMed  Google Scholar 

  119. Berentzen T, Dalgaard LT, Petersen L, Pedersen O, Sorensen TI . Interactions between physical activity and variants of the genes encoding uncoupling proteins -2 and -3 in relation to body weight changes during a 10-y follow-up. Int J Obes (Lond) 2005; 29: 93–99.

    CAS  Google Scholar 

  120. Argyropoulos G, Brown AM, Willi SM, Zhu J, He Y, Reitman M et al. Effects of mutations in the human uncoupling protein 3 gene on the respiratory quotient and fat oxidation in severe obesity and type 2 diabetes. J Clin Invest 1998; 102: 1345–1351.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Lanouette CM, Giacobino JP, Perusse L, Lacaille M, Yvon C, Chagnon M et al. Association between uncoupling protein 3 gene and obesity-related phenotypes in the Quebec Family Study. Mol Med 2001; 7: 433–441.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Otabe S, Clement K, Dina C, Pelloux V, Guy-Grand B, Froguel P et al. A genetic variation in the 5′ flanking region of the UCP3 gene is associated with body mass index in humans in interaction with physical activity. Diabetologia 2000; 43: 245–249.

    CAS  PubMed  Google Scholar 

  123. Damcott CM, Feingold E, Moffett SP, Barmada MM, Marshall JA, Hamman RF et al. Genetic variation in uncoupling protein 3 is associated with dietary intake and body composition in females. Metabolism 2004; 53: 458–464.

    CAS  PubMed  Google Scholar 

  124. Lanouette CM, Chagnon YC, Rice T, Perusse L, Muzzin P, Giacobino JP et al. Uncoupling protein 3 gene is associated with body composition changes with training in HERITAGE study. J Appl Physiol 2002; 92: 1111–1118.

    CAS  PubMed  Google Scholar 

  125. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM . A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998; 92: 829–839.

    CAS  PubMed  Google Scholar 

  126. Larrouy D, Vidal H, Andreelli F, Laville M, Langin D . Cloning and mRNA tissue distribution of human PPARgamma coactivator-1. Int J Obes Relat Metab Disord 1999; 23: 1327–1332.

    CAS  PubMed  Google Scholar 

  127. Semple RK, Crowley VC, Sewter CP, Laudes M, Christodoulides C, Considine RV et al. Expression of the thermogenic nuclear hormone receptor coactivator PGC-1alpha is reduced in the adipose tissue of morbidly obese subjects. Int J Obes Relat Metab Disord 2004; 28: 176–179.

    CAS  PubMed  Google Scholar 

  128. Esterbauer H, Oberkofler H, Linnemayr V, Iglseder B, Hedegger M, Wolfsgruber P et al. Peroxisome proliferator-activated receptor-gamma coactivator-1 gene locus: associations with obesity indices in middle-aged women. Diabetes 2002; 51: 1281–1286.

    CAS  PubMed  Google Scholar 

  129. Meirhaeghe A, Crowley V, Lenaghan C, Lelliott C, Green K, Stewart A et al. Characterization of the human, mouse and rat PGC1 beta (peroxisome-proliferator-activated receptor-gamma co-activator 1 beta) gene in vitro and in vivo. Biochem J 2003; 373 (Part 1): 155–165.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Kamei Y, Ohizumi H, Fujitani Y, Nemoto T, Tanaka T, Takahashi N et al. PPARgamma coactivator 1beta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc Natl Acad Sci USA 2003; 100: 12378–12383.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Andersen G, Wegner L, Yanagisawa K, Rose CS, Lin J, Glumer C et al. Evidence of an association between genetic variation of the coactivator PGC-1beta and obesity. J Med Genet 2005; 42: 402–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Huss JM, Kopp RP, Kelly DP . Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha. J Biol Chem 2002; 277: 40265–40274.

    CAS  PubMed  Google Scholar 

  133. Kamei Y, Lwin H, Saito K, Yokoyama T, Yoshiike N, Ezaki O et al. The 2.3 genotype of ESRRA23 of the ERR alpha gene is associated with a higher BMI than the 2.2 genotype. Obes Res 2005; 13: 1843–1844.

    CAS  PubMed  Google Scholar 

  134. Zhou Z, Yon Toh S, Chen Z, Guo K, Ng CP, Ponniah S et al. Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat Genet 2003; 35: 49–56.

    PubMed  Google Scholar 

  135. Nordstrom EA, Ryden M, Backlund EC, Dahlman I, Kaaman M, Blomqvist L et al. A human-specific role of cell death-inducing DFFA (DNA fragmentation factor-{alpha})-like effector A (CIDEA) in adipocyte lipolysis and obesity. Diabetes 2005; 54: 1726–1734.

    PubMed  Google Scholar 

  136. Le Stunff C, Fallin D, Schork NJ, Bougneres P . The insulin gene VNTR is associated with fasting insulin levels and development of juvenile obesity. Nat Genet 2000; 26: 444–446.

    CAS  PubMed  Google Scholar 

  137. Stumvoll M, Haring H . Insulin resistance and insulin sensitizers. Horm Res 2001; 55 (Suppl 2): 3–13.

    CAS  PubMed  Google Scholar 

  138. Baumann CA, Ribon V, Kanzaki M, Thurmond DC, Mora S, Shigematsu S et al. CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 2000; 407: 202–207.

    CAS  PubMed  Google Scholar 

  139. Lin WH, Chiu KC, Chang HM, Lee KC, Tai TY, Chuang LM . Molecular scanning of the human sorbin and SH3-domain-containing-1 (SORBS1) gene: positive association of the T228A polymorphism with obesity and type 2 diabetes. Hum Mol Genet 2001; 10: 1753–1760.

    CAS  PubMed  Google Scholar 

  140. Mathews ST, Singh GP, Ranalletta M, Cintron VJ, Qiang X, Goustin AS et al. Improved insulin sensitivity and resistance to weight gain in mice null for the Ahsg gene. Diabetes 2002; 51: 2450–2458.

    CAS  PubMed  Google Scholar 

  141. Dahlman I, Eriksson P, Kaaman M, Jiao H, Lindgren CM, Kere J et al. alpha2-Heremans–Schmid glycoprotein gene polymorphisms are associated with adipocyte insulin action. Diabetologia 2004; 47: 1974–1979.

    CAS  PubMed  Google Scholar 

  142. Lavebratt C, Wahlqvist S, Nordfors L, Hoffstedt J, Arner P . AHSG gene variant is associated with leanness among Swedish men. Hum Genet 2005; 117: 54–60.

    CAS  PubMed  Google Scholar 

  143. Siddiq A, Lepretre F, Hercberg S, Froguel P, Gibson F . A synonymous coding polymorphism in the alpha2-Heremans–schmid glycoprotein gene is associated with type 2 diabetes in French Caucasians. Diabetes 2005; 54: 2477–2481.

    CAS  PubMed  Google Scholar 

  144. Meyre D, Bouatia-Naji N, Tounian A, Samson C, Lecoeur C, Vatin V et al. Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat Genet 2005; 37: 863–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Bottcher Y, Korner A, Reinehr T, Enigk B, Kiess W, Stumvoll M et al. ENPP1 variants and haplotypes predispose to early onset obesity and impaired glucose and insulin metabolism in German obese children. J Clin Endocrinol Metab 2006; 91: 4948–4952.

    PubMed  Google Scholar 

  146. Grarup N, Urhammer SA, Ek J, Albrechtsen A, Glumer C, Borch-Johnsen K et al. Studies of the relationship between the ENPP1 K121Q polymorphism and type 2 diabetes, insulin resistance and obesity in 7,333 Danish white subjects. Diabetologia 2006; 49: 2097–2104.

    CAS  PubMed  Google Scholar 

  147. Lyon HN, Florez JC, Bersaglieri T, Saxena R, Winckler W, Almgren P et al. Common variants in the ENPP1 gene are not reproducibly associated with diabetes or obesity. Diabetes 2006; 55: 3180–3184.

    CAS  PubMed  Google Scholar 

  148. Weedon MN, Shields B, Hitman G, Walker M, McCarthy MI, Hattersley AT et al. No evidence of association of ENPP1 variants with type 2 diabetes or obesity in a study of 8,089 UK Caucasians. Diabetes 2006; 55: 3175–3179.

    CAS  PubMed  Google Scholar 

  149. Sorensen TI, Boutin P, Taylor MA, Larsen LH, Verdich C, Petersen L et al. Genetic polymorphisms and weight loss in obesity: a randomised trial of hypo-energetic high- versus low-fat diets. PLoS Clin Trials 2006; 1: e12.

    PubMed  PubMed Central  Google Scholar 

  150. Koerner A, Kratzsch J, Kiess W . Adipocytokines: leptin – the classical, resistin –- the controversical, adiponectin – the promising, and more to come. Best Pract Res Clin Endocrinol Metab 2005; 19: 525–546.

    CAS  PubMed  Google Scholar 

  151. Farooqi IS . Genetic and hereditary aspects of childhood obesity. Best Pract Res Clin Endocrinol Metab 2005; 19: 359–374.

    CAS  PubMed  Google Scholar 

  152. Hager J, Clement K, Francke S, Dina C, Raison J, Lahlou N et al. A polymorphism in the 5′ untranslated region of the human ob gene is associated with low leptin levels. Int J Obes Relat Metab Disord 1998; 22: 200–205.

    CAS  PubMed  Google Scholar 

  153. Li WD, Reed DR, Lee JH, Xu W, Kilker RL, Sodam BR et al. Sequence variants in the 5′ flanking region of the leptin gene are associated with obesity in women. Ann Hum Genet 1999; 63 (Part 3): 227–234.

    CAS  PubMed  Google Scholar 

  154. Mammes O, Betoulle D, Aubert R, Giraud V, Tuzet S, Petiet A et al. Novel polymorphisms in the 5′ region of the LEP gene: association with leptin levels and response to low-calorie diet in human obesity. Diabetes 1998; 47: 487–489.

    CAS  PubMed  Google Scholar 

  155. Mammes O, Betoulle D, Aubert R, Herbeth B, Siest G, Fumeron F . Association of the G–2548A polymorphism in the 5′ region of the LEP gene with overweight. Ann Hum Genet 2000; 64 (Part 5): 391–394.

    CAS  PubMed  Google Scholar 

  156. Hoffstedt J, Eriksson P, Mottagui-Tabar S, Arner P . A polymorphism in the leptin promoter region (−2548 G/A) influences gene expression and adipose tissue secretion of leptin. Horm Metab Res 2002; 34: 355–359.

    CAS  PubMed  Google Scholar 

  157. Wang TN, Huang MC, Chang WT, Ko AM, Tsai EM, Liu CS et al. G−2548A polymorphism of the leptin gene is correlated with extreme obesity in Taiwanese aborigines. Obesity (Silver Spring) 2006; 14: 183–187.

    CAS  Google Scholar 

  158. McGarvey ST, Forrest W, Weeks DE, Sun G, Smelser D, Tufa J et al. Human leptin locus (LEP) alleles and BMI in Samoans. Int J Obes Relat Metab Disord 2002; 26: 783–788.

    CAS  PubMed  Google Scholar 

  159. Jiang Y, Wilk JB, Borecki I, Williamson S, DeStefano AL, Xu G et al. Common variants in the 5′ region of the leptin gene are associated with body mass index in men from the National Heart, Lung, and Blood Institute Family Heart Study. Am J Hum Genet 2004; 75: 220–230.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Gable DR, Hurel SJ, Humphries SE . Adiponectin and its gene variants as risk factors for insulin resistance, the metabolic syndrome and cardiovascular disease. Atherosclerosis 2006; 188: 231–244.

    CAS  PubMed  Google Scholar 

  161. Rasmussen MS, Lihn AS, Pedersen SB, Bruun JM, Rasmussen M, Richelsen B . Adiponectin receptors in human adipose tissue: effects of obesity, weight loss, and fat depots. Obesity (Silver Spring) 2006; 14: 28–35.

    CAS  Google Scholar 

  162. Damcott CM, Ott SH, Pollin TI, Reinhart LJ, Wang J, O’Connell JR et al. Genetic variation in adiponectin receptor 1 and adiponectin receptor 2 is associated with type 2 diabetes in the Old Order Amish. Diabetes 2005; 54: 2245–2250.

    CAS  PubMed  Google Scholar 

  163. Kantartzis K, Fritsche A, Machicao F, Haring HU, Stefan N . The −8503 G/A polymorphism of the adiponectin receptor 1 gene is associated with insulin sensitivity dependent on adiposity. Diabetes Care 2006; 29: 464.

    PubMed  Google Scholar 

  164. Ma LJ, Mao SL, Taylor KL, Kanjanabuch T, Guan Y, Zhang Y et al. Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes 2004; 53: 336–346.

    CAS  PubMed  Google Scholar 

  165. Eriksson P, Reynisdottir S, Lonnqvist F, Stemme V, Hamsten A, Arner P . Adipose tissue secretion of plasminogen activator inhibitor-1 in non-obese and obese individuals. Diabetologia 1998; 41: 65–71.

    CAS  PubMed  Google Scholar 

  166. Hoffstedt J, Andersson IL, Persson L, Isaksson B, Arner P . The common −675 4G/5G polymorphism in the plasminogen activator inhibitor-1 gene is strongly associated with obesity. Diabetologia 2002; 45: 584–587.

    CAS  PubMed  Google Scholar 

  167. Freeman MS, Mansfield MW . To: Hoffstedt J, et al. The common-675 4G/5G polymorphism in the plasminogen activator inhibitor-1 gene is strongly associated with obesity. Diabetologia 2002; 45: 1602–1603; author reply 1604.

    CAS  PubMed  Google Scholar 

  168. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW . Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–1808.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM . Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995; 95: 2409–2415.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Norman RA, Bogardus C, Ravussin E . Linkage between obesity and a marker near the tumor necrosis factor-alpha locus in Pima Indians. J Clin Invest 1995; 96: 158–162.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW . Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci USA 1997; 94: 3195–3199.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Sookoian SC, Gonzalez C, Pirola CJ . Meta-analysis on the G−308A tumor necrosis factor {alpha} gene variant and phenotypes associated with the metabolic syndrome. Obes Res 2005; 13: 2122–2131.

    PubMed  Google Scholar 

  173. Berthier MT, Paradis AM, Tchernof A, Bergeron J, Prud’homme D, Despres JP et al. The interleukin 6−174G/C polymorphism is associated with indices of obesity in men. J Hum Genet 2003; 48: 14–19.

    CAS  PubMed  Google Scholar 

  174. Wernstedt I, Eriksson AL, Berndtsson A, Hoffstedt J, Skrtic S, Hedner T et al. A common polymorphism in the interleukin-6 gene promoter is associated with overweight. Int J Obes Relat Metab Disord 2004; 28: 1272–1279.

    CAS  PubMed  Google Scholar 

  175. Klipstein-Grobusch K, Mohlig M, Spranger J, Hoffmann K, Rodrigues FU, Sharma AM et al. Interleukin-6g−174G>C promoter polymorphism is associated with obesity in the EPIC-Potsdam Study. Obesity (Silver Spring) 2006; 14: 14–18.

    CAS  Google Scholar 

  176. Huth C, Heid IM, Vollmert C, Gieger C, Grallert H, Wolford JK et al. IL6 gene promoter polymorphisms and type 2 diabetes: joint analysis of individual participants’ data from 21 studies. Diabetes 2006; 55: 2915–2921.

    CAS  PubMed  Google Scholar 

  177. Fishman D, Faulds G, Jeffery R, Mohamed-Ali V, Yudkin JS, Humphries S et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest 1998; 102: 1369–1376.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Kubaszek A, Pihlajamaki J, Punnonen K, Karhapaa P, Vauhkonen I, Laakso M . The C−174G promoter polymorphism of the IL-6 gene affects energy expenditure and insulin sensitivity. Diabetes 2003; 52: 558–561.

    CAS  PubMed  Google Scholar 

  179. Huang QY, Shen H, Deng HY, Conway T, Davies KM, Li JL et al. Linkage and association of the CA repeat polymorphism of the IL6 gene, obesity-related phenotypes, and bone mineral density (BMD) in two independent Caucasian populations. J Hum Genet 2003; 48: 430–437.

    CAS  PubMed  Google Scholar 

  180. Wolford JK, Colligan PB, Gruber JD, Bogardus C . Variants in the interleukin 6 receptor gene are associated with obesity in Pima Indians. Mol Genet Metab 2003; 80: 338–343.

    CAS  PubMed  Google Scholar 

  181. Escobar-Morreale HF, Calvo RM, Villuendas G, Sancho J, San Millan JL . Association of polymorphisms in the interleukin 6 receptor complex with obesity and hyperandrogenism. Obes Res 2003; 11: 987–996.

    CAS  PubMed  Google Scholar 

  182. Simeoni E, Hoffmann MM, Winkelmann BR, Ruiz J, Fleury S, Boehm BO et al. Association between the A−2518G polymorphism in the monocyte chemoattractant protein-1 gene and insulin resistance and Type 2 diabetes mellitus. Diabetologia 2004; 47: 1574–1580.

    CAS  PubMed  Google Scholar 

  183. Savage DB, Sewter CP, Klenk ES, Segal DG, Vidal-Puig A, Considine RV et al. Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes 2001; 50: 2199–2202.

    CAS  PubMed  Google Scholar 

  184. Engert JC, Vohl MC, Williams SM, Lepage P, Loredo-Osti JC, Faith J et al. 5′ flanking variants of resistin are associated with obesity. Diabetes 2002; 51: 1629–1634.

    CAS  PubMed  Google Scholar 

  185. Mattevi VS, Zembrzuski VM, Hutz MH . A resistin gene polymorphism is associated with body mass index in women. Hum Genet 2004; 115: 208–212.

    CAS  PubMed  Google Scholar 

  186. Smith SR, Bai F, Charbonneau C, Janderova L, Argyropoulos G . A promoter genotype and oxidative stress potentially link resistin to human insulin resistance. Diabetes 2003; 52: 1611–1618.

    CAS  PubMed  Google Scholar 

  187. Pizzuti A, Argiolas A, Di Paola R, Baratta R, Rauseo A, Bozzali M et al. An ATG repeat in the 3′-untranslated region of the human resistin gene is associated with a decreased risk of insulin resistance. J Clin Endocrinol Metab 2002; 87: 4403–4406.

    CAS  PubMed  Google Scholar 

  188. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 2005; 307: 426–430.

    CAS  PubMed  Google Scholar 

  189. Berndt J, Kloting N, Kralisch S, Kovacs P, Fasshauer M, Schon MR et al. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes 2005; 54: 2911–2916.

    CAS  PubMed  Google Scholar 

  190. Bottcher Y, Teupser D, Enigk B, Berndt J, Kloting N, Schon MR et al. Genetic variation in the visfatin gene (PBEF1) and its relation to glucose metabolism and fat-depot-specific messenger ribonucleic acid expression in humans. J Clin Endocrinol Metab 2006; 91: 2725–2731.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Dahlman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahlman, I., Arner, P. Obesity and polymorphisms in genes regulating human adipose tissue. Int J Obes 31, 1629–1641 (2007). https://doi.org/10.1038/sj.ijo.0803657

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803657

Keywords

This article is cited by

Search

Quick links